159
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of carbon-mineral composites and graphene

, , &
Pages 402-406 | Received 21 Jun 2019, Accepted 17 Nov 2019, Published online: 02 Dec 2019

References

  • Shalaeva, M. E.; Zheivot, V. I.; Prokudina, N. A.; Chesnokov, V. V.; Malakhov, V. V. Gas-Chromatographic Study of Carbon-Modified Gamma-Aluminum Oxide. J. Anal. Chem. 1996, 51, 560–564.
  • Heroux, D. S.; Volodin, A. M.; Zaikovski, V. I.; Chesnokov, V. V.; Bedilo, A. F.; Klabunde, K. J. ESR and HRTEM Study of Carbon-Coated Nanocrystalline MgO. J. Phys. Chem. B 2004, 108, 3140–3144. DOI: 10.1021/jp036307c.
  • Volodin, A. M.; Bedilo, A. F.; Stoyanovskii, V. O.; Zaikovskii, V. I.; Kenzhin, R. M.; Mishakov, I. V.; Vedyagin, A. A. Nanocrystalline Carbon Coated Alumina with Enhanced Phase Stability at High Temperatures. RSC Adv. 2017, 7, 54852. DOI: 10.1039/C7RA08841H.
  • Volodin, A. M.; Zaikovskii, V. I.; Kenzhin, R. M.; Bedilo, A. F.; Mishakov, I. V.; Vedyagin, A. A. Synthesis of Nanocrystalline Calcium Aluminate C12A7 under Carbon Nanoreactor Conditions. Mater. Lett. 2017, 189, 210–212. DOI: 10.1016/j.matlet.2016.11.112.
  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. DOI: 10.1126/science.1102896.
  • Akbar, F.; Kolahdouz, M.; Larimian, S.; Radfar, B.; Radamson, H. H. Graphene Synthesis, Characterization and Its Applications in Nanophotonics, Nanoelectronics, and Nanosensing. J. Mater. Sci. Mater. Electron. 2015, 26, 4347–43796. DOI: 10.1007/s10854-015-2725-9.
  • Park, S.; Ruoff, R. S. Chemical Methods for the Production of Graphenes. Nat. Nanotechnol. 2009, 4, 217–224. DOI: 10.1038/nnano.2009.58.
  • Geim, A. K.; MacDonald, A. H. Graphene: Exploring Carbon Flatland. Phys. Today 2007, 60, 35–41. DOI: 10.1063/1.2774096.
  • Choucair, M.; Thordarson, P.; Stride, J. Gram-Scale Production of Graphene Based on Solvothermal Synthesis and Sonication. Nat. Nanotechnol. 2009, 4, 30–33. DOI: 10.1038/nnano.2008.365.
  • Schniepp, H. C.; Li, J.-L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. J. Phys. Chem. B 2006, 110, 8535–8539. DOI: 10.1021/jp060936f.
  • Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H. Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature 2009, 457, 706–710. DOI: 10.1038/nature07719.
  • Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312–1314. DOI: 10.1126/science.1171245.
  • Morishita, T.; Soneda, Y.; Tsumura, T.; Inagaki, M. Preparation of Porous Carbons from Thermoplastic Precursors and Their Performance for Electric Double Layer Capacitors. Carbon 2006, 44, 2360–2367. DOI: 10.1016/j.carbon.2006.04.030.
  • Inagaki, M.; Kato, M.; Morishita, T.; Morita, K.; Mizuuchi, K. Direct Preparation of Mesoporous Carbon from a Coal Tar Pitch. Carbon 2007, 45, 1121–1124. DOI: 10.1016/j.carbon.2007.01.014.
  • Morishita, T.; Ishihara, K.; Kato, M.; Inagaki, M. Preparation of a Carbon with a 2 nm Pore Size and of a Carbon with a bi-Modal Pore Size Distribution. Carbon 2007, 45, 209–211. DOI: 10.1016/j.carbon.2006.09.032.
  • Morishita, T.; Ishihara, K.; Kato, M.; Inagaki, M. Mesoporous Carbons Prepared from Mixtures of Magnesium Citrate with Poly (Vinyl Alcohol). Tanso 2007, 226, 19–24. DOI: 10.7209/tanso.2007.19.
  • Ginatulin, Y. M.; Desyatov, A. V.; Aseev, A. V.; Bulibekova, L. V.; Li, L. D.; Izvolskii, I. M.; Rakov, E. G. Nanostructured carbon material and method of its synthesis. Russian patent RU 2480405, 2011.
  • Vissers, J. P. R.; Mercx, F. P. M.; Bouwens, S. M. A. M.; de Beer, V. H. J.; Prins, R. Carbon-Covered Alumina as a Support for Sulfide Catalysts. J. Catal. 1988, 114, 291–302. DOI: 10.1016/0021-9517(88)90033-4.
  • Kerkhof, F. P. J. M.; Moulijn, J. A. Quantitative Analysis of XPS Intensities for Supported Catalysts. J. Phys. Chem. 1979, 83, 1612–1619. DOI: 10.1021/j100475a011.
  • Fernandez-Colinas, J.; Denoyel, R.; Rouquerol, J. Adsorption of Iodine from Aqueous Solutions on to Activated Carbons Correlation with Nitrogen Adsorption at 77 K. Ads. Sci. Technol. 1989, 6, 18–26. DOI: 10.1177/026361748900600103.
  • Puri, B. R.; Bansal, R. C. Iodine Adsorption Method for Measuring Surface Area of Carbon Blacks. Carbon 1965, 3, 227–230. DOI: 10.1016/0008-6223(65)90055-2.
  • Hill, A.; Marsh, H. A. A Study of the Adsorption of Iodine and Acetic Acid from Aqueous Solutions on Characterized Porous Carbons. Carbon 1968, 6, 31–39. DOI: 10.1016/0008-6223(68)90048-1.
  • Juhola, A. J. Iodine Adsorption and Structure of Activated Carbons. Carbon 1975, 13, 437–442. DOI: 10.1016/0008-6223(75)90016-0.
  • Watson, J. W.; Parkinson, D. Adsorption of Iodine and Bromine by Carbon Black. Ind. Eng. Chem. 1955, 47, 1053–1062. DOI: 10.1021/ie50545a049.
  • Kipling, J. J.; Sherwood, J. N.; Shooter, P. V. Adsorption of Iodine from Organic Solvents by “Graphitized” Carbon Blacks. Trans. Faraday Soc. 1964, 60, 401–411. DOI: 10.1039/TF9646000401.
  • Gregg, S. J.; Sing, K. S. W. Adsorption, Surface Area and Porosity, 2nd ed.; Academic Press: London, 1982.
  • Zagrafskaya, R. V.; Karnaukhov, A. P.; Fenelonov, V. B. Comparative Analysis of the Sorption Properties and Porous Structure of Catalysts and Supports. I. Essence of the Comparative Method and Its Use for Studying Microporous Silica Gels. Kinet. Catal. 1976, 17, 635–642.
  • Medvedev, D. A.; Rybinskaya, A. A.; Kenzhin, R. M.; Volodin, A. M.; Bedilo, A. F. Characterization of Electron Donor Sites on Al2O3 Surface. Phys. Chem. Chem. Phys. 2012, 14, 2587–2598. DOI: 10.1039/c2cp20863f.
  • Bedilo, A. F.; Shuvarakova, E. I.; Rybinskaya, A. A.; Medvedev, D. A. Characterization of Electron-Donor and Electron-Acceptor Sites on the Surface of Sulfated Alumina Using Spin Probes. J. Phys. Chem. C 2014, 118, 15779–15794. DOI: 10.1021/jp503523k.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.