209
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Catalytic activity of nickel(II) oxide nanoparticle-[C60]fullerene nanowhisker composite for reduction of 4-nitroaniline

, &
Pages 642-649 | Received 12 Dec 2019, Accepted 19 Feb 2020, Published online: 01 Apr 2020

References

  • Dong, Z.; Le, X.; Li, X.; Zhang, W.; Dong, C.; Ma, J. Silver Nanoparticles Immobilized on Fibrous Nano-Silica as Highly Efficient and Recyclable Heterogeneous Catalyst for Reduction of 4-Nitrophenol and 2-Nitroaniline. Appl. Catal. B Environ. 2014, 158, 129–135. DOI: 10.5772/62086.
  • Ibrahim, I.; Ali, I. O.; Salama, T. M.; Bahgat, A. A.; Mohamed, M. M. Synthesis of Magnetically Recyclable Spinel Ferrite (MFe2O4, M = Zn, Co, Mn) Nanocrystals Engineered by Sol Gel-Hydrothermal Technology: High Catalytic Performances for Nitroarenes Reduction. Appl. Catal. B Environ. 2016, 181, 389–402. DOI: 10.1016/j.apcatb.2015.08.005.
  • Weng, B.; Liu, S.; Zhang, N.; Tang, Z. R.; Xu, Y. J. A Simple yet Efficient Visible Light-Driven CdS Nanowires-Carbon Nanotube 1D–1D Nanocomposite Photocatalyst. J. Catal. 2014, 309, 146–155. DOI: 10.1016/j.jcat.2013.09.013.
  • Abd-Elmageed, A. A. I.; Al-Hossainy, A. F.; Fawzy, E. M.; Almutlaq, N.; Eid, M. R.; Bourezgui, A.; Abdel-Hamid, S. M. S.; Elsharkawy, N. B.; Zwawi, M.; Abdel-Aziz, M. H.; et al. Synthesis, Characterization and DFT Molecular Modeling of Doped Poly (Para Nitroaniline-co-Para Toluidine) Thin Film for Optoelectronic Devices Applications. Opt. Mater. 2020, 99, 109593–109606. DOI: 10.1016/j.optmat.2019.109593.
  • Al-Hossainy, A. F.; Zoromba, S. M. Doped-Poly (Para-Nitroaniline- co-Aniline): Synthesis, Semiconductor Characteristics, Density, Functional Theory and Photoelectric Properties. J. Alloys Compd. 2019, 789, 670–683. DOI: 10.1016/j.jallcom.2019.03.118.
  • Zoromba, S. M.; El-Ghamaz, N. A.; Alghool, S. Effect of Doping with Nickel Ions on the Electrical Properties of Poly(Aniline-co-o-Anthranilic Acid) and Doped Copolymer as Precursor of NiO Nanoparticles. J. Inorg. Organomet. Polym. 2015, 25, 955–963. DOI: 10.1007/s10904-015-0199-0.
  • Zoromba, M. S.; Hosny, N. M. Synthesis of Fe2O3, Co3O4 and NiO Nanoparticles by Thermal Decomposition of Doped Polyaniline Precursors. J. Therm. Anal. Calorim. 2015, 119, 605–611. DOI: 10.1007/s10973-014-4170-z.
  • Farooqi, Z. H.; Khalid, R.; Begum, R.; Farooq, U.; Wu, Q.; Wu, W.; Ajmal, M.; Irfan, A.; Naseem, K. Facile Synthesis of Silver Nanoparticles in a Crosslinked Polymeric System by in Situ Reduction Method for Catalytic Reduction of 4 Nitroaniline. Environ. Technol. 2019, 40, 2027–2036. DOI: 10.1080/09593330.2018.1435737.
  • Reddy, V.; Torati, R. S.; Oh, S.; Kim, C. Biosynthesis of Gold Nanoparticles Assisted by Sapindus Mukorossi Gaertn. Fruit Pericarp and Their Catalytic Application for the Reduction of p-Nitroaniline. Ind. Eng. Chem. Res. 2013, 52, 556–564. DOI: 10.1021/ie302037c.
  • Abbas, M.; Torati, S. R.; Kim, C. A Novel Approach for the Synthesis of Ultrathin Silica-Coated Iron Oxide Nanocubes Decorated with Silver Nanodots (Fe3O4/SiO2/Ag) and Their Superior Catalytic Reduction of 4-Nitroaniline. Nanoscale 2015, 7, 12192–12204. DOI: 10.1039/C5NR02680F.
  • Li, G.; Wang, X.; Ding, H.; Zhang, T. A Facile Synthesis Method for Ni(OH)2 Ultrathin Nanosheets and Their Conversion to Porous NiO Nanosheets Used for Formaldehyde Sensing. RSC Adv. 2012, 2, 13018–13023. DOI: 10.1039/C2RA22049K.
  • Gangarajula, Y.; Gopal, B. Investigation of Nano NiO, Supported and Metal Ion Substituted NiO for Selective Hydration of Aromatic Nitriles to Amides. Appl. Catal. A Gen. 2014, 475, 211–217. DOI: 10.1016/j.apcata.2014.01.036.
  • Talebian, N.; Kheiri, M. Sol-Gel Derived Nanostructured Nickel Oxide Films: Effect of Solvent on Crystallographic Orientations. Solid State Sci. 2014, 27, 79–83. DOI: 10.1016/j.solidstatesciences.2013.11.010.
  • Ahmad, T.; Ramanujachary, K. V.; Lofland, S. E.; Ganguli, A. K. Magnetic and Electrochemical Properties of Nickel Oxide Nanoparticles Obtained by the Reverse-Micellar Route. Solid State Sci. 2006, 8, 425–430. DOI: 10.1016/j.solidstatesciences.2005.12.005.
  • Manivasakan, P.; Ramasamy, P.; Kim, J. Reactive-Template Fabrication of Porous NiO Nanowires for Electrocatalytic O2 Evolution Reaction. RSC Adv. 2015, 5, 33269–33274. DOI: 10.1039/C5RA01739D.
  • Fazlali, F.; Mahjoub, A.; Abazari, R. A New Route for Synthesis of Spherical NiO Nanoparticles via Emulsion Nano-Reactors with Enhanced Photocatalytic Activity. Solid State Sci. 2015, 48, 263–269. DOI: 10.1016/j.solidstatesciences.2015.08.022..
  • Taghizadeh, F. The Study of Structural and Magnetic Properties of NiO Nanoparticles. Opt. Photonics J. 2016, 06, 164–169. DOI: 10.4236/opj.2016.68B027.
  • Gracien, E. B.; Jérémie, M. L.; Joseph, L. K.; Omer, M. M.; Nicole, N. K.; Fabrice, N. M.; Denis, M. B.; Tresor, N.; Perbon, M.; Gérard, M. N. Nickel Oxide Nanocrystalline Fabricated under Gamma Irradiation and Its Photocatalytic Investigation for Textile Azo Dye Degradation. Adv. Mater. 2019, 8, 112. DOI: 10.11648/j.am.20190803.13.
  • Lu, Y.; Hwang, W.; Yang, J.; Chuang, H. Properties of Nickel Oxide Thin Films Deposited by RF Reactive Magnetron Sputtering. Thin Solid Films 2002, 420, 54–61. DOI: 10.1016/S0040-6090(02)00654-5.
  • Shu, M.; Wei, S.; Jia, C.-J.; Wang, D.-L.; Si, R. Effect of Nickel Oxide Doping to Ceria-Supported Gold Catalyst for CO Oxidation and Water-Gas Shift Reactions. Catalysts 2018, 8, 584–586. DOI: 10.3390/catal8120584.
  • Nasseri, M. A.; Kamali, F.; Zakerinasab, B. Catalytic Activity of Reusable Nickel Oxide Nanoparticles in the Synthesis of Spirooxindoles. RSC Adv. 2015, 5, 26517–26520. DOI: 10.1039/C5RA02825F.
  • Zakaria, M. B.; Hu, M.; Salunkhe, R. R.; Pramanik, M.; Takai, K.; Malgras, V.; Choi, S.; Dou, S. X.; Kim, J. H.; Imura, M.; et al. Controlled Synthesis of Nanoporous Nickel Oxide with Two-Dimensional Shapes through Thermal Decomposition of Metal-Cyanide Hybrid Coordination Polymers. Chem. Eur. J. 2015, 21, 3509–3509. DOI: 10.1002/chem.201406395.
  • Qasem, M. A. A.; Aziz, M. A.; Qamaruddin, M.; Kim, J.-P.; Onaizi, S. A. Influence of Pamoic Acid as a Complexing Agent in the Thermal Preparation of NiO Nanoparticles: Application to Electrochemical Water Oxidation. ChemistrySelect 2018, 3, 573–580. DOI: 10.1002/slct.201702340.
  • Kumar Rai, A.; Tuan Anh, L.; Park, C.-J.; Kim, J. Electrochemical Study of NiO Nanoparticles Electrode for Application in Rechargeable Lithium-Ion Batteries. Ceram. Int. 2013, 39, 6611–6618. DOI: 10.1016/j.ceramint.2013.01.097.
  • Aguilera-del-Toro, R. H.; Aguilera-Granja, F.; Balbás, L. C.; Vega, A. Structure, Fragmentation Patterns, and Magnetic Properties of Small Nickel Oxide Clusters. Phys. Chem. Chem. Phys. 2017, 19, 3366–3383. DOI: 10.1039/C6CP06225C.
  • Tadic, M.; Nikolic, D.; Panjan, M.; Blake, G. R. Magnetic Properties of NiO(Nickel Oxide) Nanoparticles: Blocking Temperature and Neel Temperature. J. Alloy. Compd. 2015, 647, 1061–1068. DOI: 10.1016/j.jallcom.2015.06.027.
  • Muñetón Arboleda, D.; Santillán, J. M. J.; Mendoza Herrera, L. J.; van Raap, M. B. F.; Mendoza Zélis, P.; Muraca, D.; Schinca, D.; Scaffardi, L. B. Synthesis of Ni Nanoparticles by Femtosecond Laser Ablation in Liquids: Structure and Sizing. J. Phys. Chem. C 2015, 119, 13184–13193. DOI: 10.1021/acs.jpcc.5b03124.
  • Schmidt, G. Nanoparticles: From Theory to Application; VCH: Weinheim, Germany, 2004.
  • Liu, C.; Li, C.; Ahmed, K.; Mutlu, Z.; Ozkan, C. S.; Ozkan, M. Template Free and Binderless NiO Nanowire Foam for Li-Ion Battery Anodes with Long Cycle Life and Ultrahigh Rate Capability. Sci. Rep. 2016, 6, 29183–29186. DOI: 10.1038/srep29183.
  • Rashad, M.; Hamdalla, T. A.; Al Garni, S. E.; Darwish, A. A. A.; Seleim, S. M. Optical and Electrical Behaviors in NiO/ x Fe2O3 Nanoparticles Synthesized by Microwave Irradiation Method. Opt. Mater. 2018, 75, 869–874. DOI: 10.1016/j.optmat.2017.12.002.
  • Ceylan, A.; Rumaiz, A. K.; Ismat Shah, S. Inert Gas Condensation of Evaporated Ni and Laser Ablated CoO. J. Appl. Phys. 2007, 101, 094302. DOI: 10.1063/1.2724733.
  • Madhu, R.; Veeramani, V.; Chen, S.-M.; Veerakumar, P.; Liu, S.-B. Functional Porous Carbon/Nickel Oxide Nanocomposites as Binder-Free Electrodes for Supercapacitors. Chem. Eur. J. 2015, 21, 8200–8206. DOI: 10.1002/chem.201500247.
  • Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. DOI: 10.1038/318162a0.
  • Miyazawa, K.; Kuwasaki, Y.; Hamamoto, K.; Nagata, S.; Obayashi, A.; Kuwabara, M. Structural Characterization of C60 Nanowhiskers Formed by the Liquid/Liquid Interfacial Precipitation Method. Surf. Interface Anal. 2003, 35, 117–120. DOI: 10.1002/sia.1506.
  • Miyazawa, K. Synthesis of Fullerene Nanowhiskers Using the Liquid–Liquid Interfacial Precipitation Method and Their Mechanical, Electrical and Superconducting Properties. Sci. Technol. Adv. Mater. 2015, 16, 013502. DOI: 10.1088/14686996/16/1/013502.
  • Takeya, H.; Miyazawa, K.; Kato, R.; Wakahara, T.; Ozaki, T.; Okazaki, H.; Yamaguchi, T.; Takano, Y. Superconducting Fullerene Nanowhiskers. Molecules 2012, 17, 4851–4859. DOI: 10.3390/molecules17054851.
  • Takeya, H.; Kato, R.; Wakahara, T.; Miyazawa, K.; Yamaguchi, T.; Ozaki, T.; Okazaki, H.; Takano, Y. Preparation and Superconductivity of Potassium-Doped Fullerene Nanowhisker. Mater. Res. Bull. 2013, 48, 343–345. DOI: 10.1016/j.materresbull.2012.10.033.
  • Krishnan, V.; Kasuya, Y.; Ji, Q.; Sathish, M.; Shrestha, L. K.; Ishihara, S.; Minami, K.; Morita, H.; Yamazaki, T.; Hanagata, N.; et al. Vortex-Aligned Fullerene Nanowhiskers as a Scaffold for Orienting Cell Growth. ACS Appl. Mater. Interfaces 2015, 7, 15667–15673. DOI: 10.1021/acsami.5b04811.
  • Minami, K.; Kasuya, Y.; Yamazaki, T.; Ji, Q.; Nakanishi, W.; Hill, J. P.; Sakai, H.; Ariga, K. Highly Ordered 1D Fullerene Crystals for Concurrent Control of Macroscopic Cellular Orientation and Differentiation toward Large-Scale Tissue Engineering. Adv. Mater. 2015, 27, 4020–4026. DOI: 10.1002/adma.201501690.
  • Konno, T.; Hirata, C.; Ferreira, E. H. M.; Ren, L.; Piao, G.; Garcia, J. M. J.; Suarez, F. M.; Sandoval, S. J. J.; Wakahara, T.; Miyazawa, K. Precise Raman Measurements of C60 Fullerene Nanowhiskers Synthesized Using the Liquid-Liquid Interfacial Precipitation Method. Trans. Mat. Res. Soc. Japan 2016, 41, 289–295. DOI: 10.14723/tmrsj.41.289.
  • Wakahara, K.; Miyazawa, K.; Ito, O.; Tanigaki, N. Preparation of Composite Films of a Conjugated Polymer and C60NWs and Their Photovoltaic Application. J. Nanomater. 2016, 2016, 1–5. DOI: 10.1155/2016/2895850.
  • Kato, R.; Miyazawa, K. Raman Laser Polymerization of C60 Nanowhiskers. J. Nanomater. 2012, 2012, 101243. DOI: 10.1155/2012/101243.
  • Ko, J. W.; Li, J.; Ko, W. B. Preparation of [C60]Fullerene Nanowhisker-Gold Nanoparticle Composites and Reduction of 4-Nitrophenol through Catalysis. Nanomater. Nanotechnol. 2015, 5, 37. DOI: 10.5772/6208610.
  • Wang, B.; Gao, X.; Piao, G. Preparation of Polyaniline-Doped Fullerene Whiskers. J. Nanomater. 2013, 2013, 646040. DOI: 10.1155/2013/867934.
  • Wakahara, T.; Sathish, M.; Miyazawa, K.; Hu, C.; Tateyama, Y.; Nemoto, Y.; Sasaki, T.; Ito, O.. Preparation and Optical Properties of Fullerene/Ferrocene Hybrid Hexagonal Nanosheets and Large-Scale Production of Fullerene Hexagonal Nanosheets. J. Am. Chem. Soc. 2009, 131, 9940–9944. DOI: 10.1021/ja901032b.
  • Ko, J. W.; Ko, W. B. Catalytic Activity for Reduction of 4-Nitrophenol with [C60]Fullerene Nanowhisker-Silver Nanoparticle Composites. Mater. Trans. 2016, 57, 2122–2126. DOI: 10.2320/matertrans.M2016214.
  • Ko, J. W.; Ko, W. B. Preparation of [C60]Fullerene Nanowhisker-Silver Nanoparticle Composites and Their Catalytic Activities for the Oxidation of Tetramethylbenzidine with Hydrogen Peroxide. Fuller. Nanotub. Car. Nanostruct. 2018, 26, 851–855. DOI: 10.1080/1536383X.2018.1511542.
  • Jayakumar, G.; Albert Irudayaraj, A.; Dhayal Raj, A. Photocatalytic Degradation of Methylene Blue by Nickel Oxide Nanoparticles. Mater. Today 2017, 4, 11690–11695. DOI: 10.1016/j.matpr.2017.09.083.
  • Mironova-Ulmane, N.; Kuzmin, A.; Steins, I.; Grabis, J.; Sildos, I.; Pärs, M. Raman Scattering in Nanosized Nickel Oxide NiO. J. Phys: Conf. Ser. 2007, 93, 012039. DOI: 10.1088/1742-6596/93/1/012039.
  • Revathi, K.; Palantavida, S.; Kizhakkekilikoodayil Vijayan, B. Effective Reduction of p-Nitroaniline to p-Phenylenediamine Using Cu-CuO Nanocomposite. Mater. Today 2019, 9, 633–638. DOI: 10.1016/j.matpr.2018.10.386.
  • Bhui, D. K.; Misra, A. Synthesis of Worm Like Silver Nanoparticles in Methyl Cellulose Polymeric Matrix and Its Catalytic Activity. Carbohydr. Polym. 2012, 89, 830–835. DOI: 10.1016/j.carbpol.2012.04.017.
  • Imura, Y.; Tsujimoto, K.; Morita, C.; Kawai, T. Preparation and Catalytic Activity of Pd and Bimetallic Pd–Ni Nanowires. Langmuir 2014, 30, 5026–5030. DOI: 10.1021/la500811n.
  • Sahiner, N.; Sagbas, S.; Aktas, N. Very Fast Catalytic Reduction of 4-Nitrophenol, Methylene Blue and Eosin Y in Natural Waters Using Green Chemistry: p(Tannic Acid)–Cu Ionic Liquid Composites. RSC Adv. 2015, 5, 18183–18195. DOI: 10.1039/C5RA00126A.
  • Sahiner, N.; Ozay, H.; Ozay, O.; Aktas, N. New Catalytic Route: Hydrogels as Templates and Reactors for in Situ Ni Nanoparticle Synthesis and Usage in the Reduction of 2- and 4-Nitrophenols. Appl. Catal. A 2010, 385, 201–207. DOI: 10.1016/j.apcata.2010.07.004.
  • Sahiner, N.; Karakoyun, N.; Alpaslan, D.; Aktas, N.; Biochar-Embedded Soft Hydrogel and Their Use in Ag Nanoparticle Preparation and Reduction of 4-Nitro Phenol. Int. J. Polym. Mater. Polym. Biomater. 2013, 62, 590–595. DOI: 10.1080/00914037.2013.769163.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.