611
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Graphene-carbon nanotube hybrid aerogel/polyethylene glycol phase change composite for thermal management

, , , , , , , & show all
Pages 656-662 | Received 28 Jan 2020, Accepted 01 Mar 2020, Published online: 13 Mar 2020

References

  • Edelenbosch, O. Y.; Kermeli, K.; Crijns-Graus, W.; Worrell, E.; Bibas, R.; Fais, B.; Fujimori, S.; Kyle, P.; Sano, F.; van Vuuren, D. P. Comparing Projections of Industrial Energy Demand and Greenhouse Gas Emissions in Long-Term Energy Models. Energy 2017, 122, 701–710. DOI: 10.1016/j.energy.2017.01.017.
  • Valero, A.; Valero, A.; Calvo, G.; Ortego, A.; Ascaso, S.; Palacios, J.-L. Global Material Requirements for the Energy Transition. An Exergy Flow Analysis of Decarbonisation Pathways. Energy 2018, 159, 1175–1184. DOI: 10.1016/j.energy.2018.06.149.
  • Koohi-Fayegh, S.; Rosen, M. A. A Review of Energy Storage Types, Applications and Recent Developments. J. Energy Storage 2020, 27, 1–23. Article 101047. DOI: 10.1016/j.est.2019.101047.
  • Waqas, A.; Ji, J.; Xu, L.; Ali, M.; Zeashan.; Alvi, J. Thermal and Electrical Management of Photovoltaic Panels Using Phase Change Materials – a Review. Renew. Sust.Energ. Rev 2018, 92, 254–271. DOI: 10.1016/j.rser.2018.04.091.
  • Zhang, K.; Zhang, Y.; Liu, J.; Niu, X. Recent Advancements on Thermal Management and Evaluation for Data Centers. Appl. Therm. Eng 2018, 142, 215–231. DOI: 10.1016/j.applthermaleng.2018.07.004.
  • Ianniciello, L.; Biwolé, P. H.; Achard, P. Electric Vehicles Batteries Thermal Management Systems Employing Phase Change Materials. J. Power. Sources 2018, 378, 383–403. DOI: 10.1016/j.jpowsour.2017.12.071.
  • Lyu, Y.; Siddique, A.; Majid, S. H.; Biglarbegian, M.; Gadsden, S. A.; Mahmud, S. Electric Vehicle Battery Thermal Management System with Thermoelectric Cooling. Energy. Rep 2019, 5, 822–827. DOI: 10.1016/j.egyr.2019.06.016.
  • Preet, S. Water and Phase Change Material Based Photovoltaic Thermal Management Systems: A Review. Renew. Sust.Energ. Rev 2018, 82, 791–807.
  • Preet, S.; Bhushan, B.; Mahajan, T. Experimental Investigation of Water Based Photovoltaic/Thermal (PV/T) System with and without Phase Change Material (PCM). Sol. Energy 2017, 155, 1104–1120. DOI: 10.1016/j.solener.2017.07.040.
  • Kasaeian, A.; Bahrami, L.; Pourfayaz, F.; Khodabandeh, E.; Yan, W.-M. Experimental Studies on the Applications of PCMs and nano-PCMs in Buildings: A Critical Review. Energ. Buildings 2017, 154, 96–112. DOI: 10.1016/j.enbuild.2017.08.037.
  • Nazir, H.; Batool, M.; Bolivar Osorio, F. J.; Isaza-Ruiz, M.; Xu, X.; Vignarooban, K.; Phelan, P.; Inamuddin.; Kannan, A. M. Recent Developments in Phase Change Materials for Energy Storage Applications: A Review. Int. J. Heat Mass. Tran 2019, 129, 491–523. DOI: 10.1016/j.ijheatmasstransfer.2018.09.126.
  • Charalambos, N.; Elias, V. A Comprehensive Review of Recent Advances in Materials Aspects of Phase Change Materials in Thermal Energy Storage. Energy Procedia 2019, 161, 385–394. DOI: 10.1016/j.egypro.2019.02.101.
  • Zhang, L.; Yang, W.; Jiang, Z.; He, F.; Zhang, K.; Fan, J.; Wu, J. Graphene Oxide-Modified Microencapsulated Phase Change Materials with High Encapsulation Capacity and Enhanced Leakage-Prevention Performance. Appl. Energ 2017, 197, 354–363. DOI: 10.1016/j.apenergy.2017.04.041.
  • Jiang, Z.; Yang, W.; He, F.; Xie, C.; Fan, J.; Wu, J.; Zhang, K. Microencapsulated Paraffin Phase-Change Material with Calcium Carbonate Shell for Thermal Energy Storage and Solar-Thermal Conversion. Langmuir 2018, 34, 14254–14264. DOI: 10.1021/acs.langmuir.8b03084.
  • Jiang, Z.; Yang, W.; He, F.; Xie, C.; Fan, J.; Wu, J.; Zhang, K. Modified Phase Change Microcapsules with Calcium Carbonate and Graphene Oxide Shells for Enhanced Energy Storage and Leakage Prevention. ACS Sustainable Chem. Eng. 2018, 6, 5182–5191. DOI: 10.1021/acssuschemeng.7b04834.
  • Cai, W.; Yang, W.; Jiang, Z.; He, F.; Zhang, K.; He, R.; Wu, J.; Fan, J. Numerical and Experimental Study of Paraffin/Expanded Graphite Phase Change Materials with an Anisotropic Model. Sol. Energ. Mat. Sol. C 2019, 194, 111–120. DOI: 10.1016/j.solmat.2019.02.006.
  • Zhao, Q.; Yang, W.; Zhang, H.; He, F.; Yan, H.; He, R.; Zhang, K.; Fan, J. Graphene Oxide Pickering Phase Change Material Emulsions with High Thermal Conductivity and Photo-Thermal Performance for Thermal Energy Management. Colloid. Surface. A 2019, 575, 42–49. DOI: 10.1016/j.colsurfa.2019.05.007.
  • Xia, Y.; Zhang, H.; Huang, P.; Huang, C.; Xu, F.; Zou, Y.; Chu, H.; Yan, E.; Sun, L. Graphene-Oxide-Induced Lamellar Structures Used to Fabricate Novel Composite Solid-Solid Phase Change Materials for Thermal Energy Storage. Chem. Eng. J 2019, 362, 909–920. DOI: 10.1016/j.cej.2019.01.097.
  • Mehrali, M.; Latibari, S. T.; Mehrali, M.; Metselaar, H.; Silakhori, M. Shape-Stabilized Phase Change Materials with High Thermal Conductivity Based on Paraffin/Graphene Oxide Composite. Energ. Convers. Manage 2013, 67, 275–282. DOI: 10.1016/j.enconman.2012.11.023.
  • Yang, W.; Zhang, L.; Guo, Y.; Jiang, Z.; He, F.; Xie, C.; Fan, J.; Wu, J.; Zhang, K. Novel Segregated-Structure Phase Change Materials Composed of Paraffin@Graphene Microencapsules with High Latent Heat and Thermal Conductivity. J. Mater. Sci. 2018, 53, 2566–2575. DOI: 10.1007/s10853-017-1693-2.
  • Huang, X.; Chen, X.; Li, A.; Atinafu, D.; Gao, H.; Dong, W.; Wang, G. Shape-Stabilized Phase Change Materials Based on Porous Supports for Thermal Energy Storage Applications. Chem. Eng. J 2019, 356, 641–661. DOI: 10.1016/j.cej.2018.09.013.
  • Y. J.; Jia, Y.; Bing, N.; Wang, L.; Xie, H.; Yu, W. Reduced Graphene Oxide and Zirconium Carbide co-Modified Melamine Sponge/Paraffin Wax Composites as New Form-Stable Phase Change Materials for Photothermal Energy Conversion and Storage. Appl. Therm. Eng 2019, 163, 1–9. Article 114412. DOI: 10.1016/j.applthermaleng.2019.114412.
  • Li, C.; Wang, M.; Xie, B.; Ma, H.; Chen, J. Enhanced Properties of Diatomite-Based Composite Phase Change Materials for Thermal Energy Storage. Renew. Energ 2020, 147, 265–274. DOI: 10.1016/j.renene.2019.09.001.
  • Shih, Y.-F.; Wang, C.-H.; Tsai, M.-L.; Jehng, J.-M. Shape-Stabilized Phase Change Material/Nylon Composite Based on Recycled Diatomite. Mater. Chem. Phys 2019, 242, 1–39. Article 122498. DOI: 10.1016/j.matchemphys.2019.122498.
  • Chen, Z.; Shan, F.; Cao, L.; Fang, G. Synthesis and Thermal Properties of Shape-Stabilized Lauric Acid/Activated Carbon Composites as Phase Change Materials for Thermal Energy Storage. Sol. Energ. Mat. Sol. C 2012, 102, 131–136. DOI: 10.1016/j.solmat.2012.03.013.
  • Khadiran, T.; Hussein, M. Z.; Zainal, Z.; Rusli, R. Activated Carbon Derived from Peat Soil as a Framework for the Preparation of Shape-Stabilized Phase Change Material. Energy 2015, 82, 468–478. DOI: 10.1016/j.energy.2015.01.057.
  • Tahan Latibari, S.; Sadrameli, S. M. Carbon Based Material Included-Shaped Stabilized Phase Change Materials for Sunlight-Driven Energy Conversion and Storage: An Extensive Review. Sol. Energy 2018, 170, 1130–1161. DOI: 10.1016/j.solener.2018.05.007.
  • Tong, X.; Li, N.; Zeng, M.; Wang, Q. Organic Phase Change Materials Confined in Carbon-Based Materials for Thermal Properties Enhancement: Recent Advancement and Challenges. Renew. Sust.Energ. Rev 2019, 108, 398–422. DOI: 10.1016/j.rser.2019.03.031.
  • Sun, H.; Xu, Z.; Gao, C. Multifunctional, Ultra-Flyweight, Synergistically Assembled Carbon Aerogels. Adv. Mater. Weinheim. 2013, 25, 2554–2560. DOI: 10.1002/adma.201204576.
  • Wu, Y.; Zhu, J.; Huang, L. A Review of Three-Dimensional Graphene-Based Materials: Synthesis and Applications to Energy Conversion/Storage and Environment. Carbon 2019, 143, 610–640. DOI: 10.1016/j.carbon.2018.11.053.
  • Feng, W.; Qin, M.; Feng, Y. Toward Highly Thermally Conductive All-Carbon Composites: Structure Control. Carbon 2016, 109, 575–597. DOI: 10.1016/j.carbon.2016.08.059.
  • Yang, J.; Li, X.; Han, S.; Yang, R.; Min, P.; Yu, Z.-Z. High-Quality Graphene Aerogels for Thermally Conductive Phase Change Composites with Excellent Shape Stability. J. Mater. Chem. A 2018, 6, 5880–5886. DOI: 10.1039/C8TA00078F.
  • Liang, X.; Cheng, Q. Synergistic Reinforcing Effect from Graphene and Carbon Nanotubes. Compos. Commun 2018, 10, 122–128. DOI: 10.1016/j.coco.2018.09.002.
  • Feng, W.; Qin, M.; Lv, P.; Li, J.; Feng, Y. A Three-Dimensional Nanostructure of Graphite Intercalated by Carbon Nanotubes with High Cross-Plane Thermal Conductivity and Bending Strength. Carbon 2014, 77, 1054–1064. DOI: 10.1016/j.carbon.2014.06.021.
  • Zhang, F.; Feng, Y.; Qin, M.; Gao, L.; Li, Z.; Zhao, F.; Zhang, Z.; Lv, F.; Feng, W. Stress Controllability in Thermal and Electrical Conductivity of 3D Elastic Graphene‐Crosslinked Carbon Nanotube Sponge/Polyimide Nanocomposite. Adv. Funct. Mater. 2019, 29, 1–13. Article 1901383. DOI: 10.1002/adfm.201901383.
  • Zou, D.; Ma, X.; Liu, X.; Zheng, P.; Hu, Y. Thermal Performance Enhancement of Composite Phase Change Materials (PCM) Using Graphene and Carbon Nanotubes as Additives for the Potential Application in Lithium-Ion Power Battery. Int. J. Heat Mass. Tran 2018, 120, 33–41. DOI: 10.1016/j.ijheatmasstransfer.2017.12.024.
  • Cao, Q.; He, F.; Xie, C.; Fan, J.; Wu, J.; Zhang, K.; Yang, Z.; Yang, W. Paraffin-Based Shape-Stable Phase Change Materials with Graphene/Carbon Nanotube Three-Dimensional Network Structure. Fuller. Nanotub. Car. N 2019, 27, 492–497. DOI: 10.1080/1536383X.2019.1611562.
  • Lou, L.; Jiang, Z.; Zhang, Q.; Liu, D.; Zhou, Y.; Zhang, K.; He, R.; Fan, J.; Yan, H.; Yang, W. Phase Change Microcapsules with Lead Tungstate Shell for Gamma Radiation Shielding and Thermal Energy Storage. Int. J. Energ. Res 2019, 43, 8398–8409.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.