316
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Modified carbon nanotubes for hydrogen storage at moderate pressure and room temperature

&
Pages 663-670 | Received 29 Feb 2020, Accepted 02 Mar 2020, Published online: 11 Mar 2020

References

  • Dresselhaus, M. S.; Thomas, I. L. Alternative Energy Technologies. Nature 2001, 414, 332–337. DOI: 10.1038/35104599.
  • Dunn, S. Hydrogen Futures: Toward a Sustainable Energy System. Int. J. Hydro. Energy 2002, 27, 235–264. DOI: 10.1016/S0360-3199(01)00131-8.
  • Siegle, V.; Liang, C.-W.; Kaestner, B.; Schumacher, H. W.; Jessen, F.; Koelle, D.; Kleiner, R.; Roth, S. A Molecular Quantized Charge Pump. Nano Lett. 2010, 10, 3841–3845. DOI: 10.1021/nl101023u.
  • Thomas, K. M. Hydrogen Adsorption and Storage on Porous Materials. Cataly. Today 2007, 120, 389–398. DOI: 10.1016/j.cattod.2006.09.015.
  • Ma, M.; Ouyang, L.; Liu, J.; Wang, H.; Shao, H.; Zhu, M. Air-Stable Hydrogen Generation Materials and Enhanced Hydrolysis Performance of MgH2-LiNH2 Composites. J. Power Sources 2017, 359, 427–434. DOI: 10.1016/j.jpowsour.2017.05.087.
  • Chattaraj, D.; Kumar, N.; Ghosh, P.; Majumder, C.; Dash, S. Adsorption, Dissociation and Diffusion of Hydrogen on the ZrCo Surface and Subsurface: A Comprehensive Study Using First Principles Approach. Appl. Surf. Sci. 2017, 422, 394–405. DOI: 10.1016/j.apsusc.2017.06.012.
  • Ahmed, A.; Al-Amin, A. Q.; Ambrose, A. F.; Saidur, R. Hydrogen Fuel and Transport System: A Sustainable and Environmental Future. Int. J. Hydro. Energy 2016, 41, 1369–1380. DOI: 10.1016/j.ijhydene.2015.11.084.
  • McWhorter, S.; Read, C.; Ordaz, G.; Stetson, N. Materials-Based Hydrogen Storage: attributes for near-Term, Early Market PEM Fuel Cells. Curr. Opin. Solid St. M. 2011, 15, 29–38. DOI: 10.1016/j.cossms.2011.02.001.
  • Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J. Storage of Hydrogen in Single-Walled Carbon Nanotubes. Nature 1997, 386, 377–379. DOI: 10.1038/386377a0.
  • Oriňáková, R.; Oriňák, A. Recent Applications of Carbon Nanotubes in Hydrogen Production and Storage. Fuel 2011, 90, 3123–3140. DOI: 10.1016/j.fuel.2011.06.051.
  • Panella, B.; Hirscher, M.; Roth, S. Hydrogen Adsorption in Different Carbon Nanostructures. Carbon 2005, 43, 2209–2214. DOI: 10.1016/j.carbon.2005.03.037.
  • Shevlin, S. A.; Guo, Z. X. High-Capacity Room-Temperature Hydrogen Storage in Carbon Nanotubes via Defect-Modulated Titanium Doping. J. Phys. Chem. C. 2008, 112, 17456–17464. DOI: 10.1021/jp800074n.
  • Leela, M. R. A. Hydrogen Adsorption Properties of Single-Walled Carbon Nanotube-Nanocrystalline Platinum Composites. Int. J. Hydro. Energy 2008, 33, 1028–1034.
  • Parambhath, V. B.; Nagar, R.; Sethupathi, K.; Ramaprabhu, S. Investigation of Spillover Mechanism in Palladium Decorated Hydrogen Exfoliated Functionalized Graphene. J. Phys. Chem. C. 2011, 115, 15679–15685. DOI: 10.1021/jp202797q.
  • Niu, J. J.; Wang, J. N.; Jiang, Y.; Su, L. F.; Ma, J. An Approach to Carbon Nanotubes with High Surface Area and Large Pore Volume. Micropor. Mesopor. Mat. 2007, 100, 1–5. DOI: 10.1016/j.micromeso.2006.10.009.
  • Raymundo-Piñero, P.; Azaïs, E.; Cacciaguerra, T.; Cazorla-Amorós, D.; Linares-Solano, A.; Béguin, F. KOH and NaOH Activation Mechanisms of Multiwalled Carbon Nanotubes with Different Structural Organization. Carbon 2005, 43, 786–795. DOI: 10.1016/j.carbon.2004.11.005.
  • Chen, C.; Huang, C. Hydrogen Storage by KOH-Modified Multi-Walled Carbon Nanotubes. Int. J. Hydro. Energy 2007, 32, 237–246. DOI: 10.1016/j.ijhydene.2006.03.010.
  • Banerjee, S.; Dasgupta, K.; Kumar, A.; Ruz, P.; Vishwanadh, B.; Joshi, J. B.; Sudarsan, V. Comparative Evaluation of Hydrogen Storage Behavior of Pd Doped Carbon Nanotubes Prepared by Wet Impregnation and Polyol Methods. Int. J. Hydro. Energy 2015, 40, 3268–3276. DOI: 10.1016/j.ijhydene.2015.01.048.
  • Wu, H. M.; Wexler, D.; Liu, H. K. Effects of Different Palladium Content Loading on the Hydrogen Storage Capacity of Double-Walled Carbon Nanotubes. Int. J. Hydro. Energy 2012, 37, 5686–5690. DOI: 10.1016/j.ijhydene.2011.12.120.
  • Rather, S. U. Hydrogen Uptake of Cobalt and Copper Oxide-Multiwalled Carbon Nanotube Composites. Int. J. Hydro. Energy 2017, 42, 11553–11559. DOI: 10.1016/j.ijhydene.2017.03.066.
  • Schaefer, S.; Fierro, V.; Szczurek, A.; Izquierdo, M. T.; Celzard, A. Physisorption, Chemisorption and Spill-over Contributions to Hydrogen Storage. Int. J. Hydro. Energy 2016, 41, 17442–17452. DOI: 10.1016/j.ijhydene.2016.07.262.
  • Lee, S.; Park, S. Influence of the Pore Size in Multi-Walled Carbon Nanotubes on the Hydrogen Storage Behaviors. J. Solid State Chem. 2012, 194, 307–312. DOI: 10.1016/j.jssc.2012.05.027.
  • Kim, H. S.; Lee, H.; Han, K. S.; Kim, J. H.; Song, M. S.; Park, M. S.; Lee, J. Y.; Kang, J. K. Hydrogen Storage in Ni Nanoparticle-Dispersed Multiwalled Carbon Nanotubes. J. Phys. Chem. B. 2005, 109, 8983–8986. DOI: 10.1021/jp044727b.
  • Han, Y. J.; Park, S. J. Influence of Ni NPs on Hydrogen Storage Behaviors of MWCNTs. Appl. Surf. Sci. 2017, 415, 85–89. DOI: 10.1016/j.apsusc.2016.12.108.
  • Elyassi, M.; Rashidi, A.; Hantehzadeh, M. R.; Elahi, S. M. Hydrogen Storage Behaviors by Adsorption on Multi-Walled Carbon Nanotubes. J. Inorg. Organomet. Polym. 2017, 27, 285–295. DOI: 10.1007/s10904-016-0471-y.
  • Reyhani, A.; Mortazavi, S. Z.; Mirershadi, S.; Moshfegh, A. Z.; Parvin, P.; Golikand, A. N. Hydrogen Storage in Decorated Multiwalled Carbon Nanotubes by Ca, Co, Fe, Ni, and Pd NPs under Ambient Conditions. J. Phys. Chem. C. 2011, 115, 6994–7001. DOI: 10.1021/jp108797p.
  • Park, S. J.; Lee, S. Y. Hydrogen Storage Behaviors of Platinum-Supported Multi-Walled Carbon Nanotubes. Int. J. Hydro. Energy 2010, 35, 13048–13054. DOI: 10.1016/j.ijhydene.2010.04.083.
  • Endo, M.; Kim, Y. A.; Hayashi, T.; Fukai, Y.; Oshida, K.; Terrones, M.; Yanagisawa, T.; Higaki, S.; Dresselhaus, M. S. Structural Characterization of Cup-Stacked-Type Nanofibers with an Entirely Hollow Core. Appl. Phys. Lett. 2002, 80, 1267–1269. DOI: 10.1063/1.1450264.
  • Liu, Q.; Ren, W.; Liu, B.; Chen, Z.-G.; Li, F.; Cong, H.; Cheng, H.-M. Synthesis, Purification and Opening of Short Cup-Stacked Carbon Nanotubes. J. Nanosci. Nanotechnol. 2009, 9, 4554–4560. DOI: 10.1166/jnn.2009.223.
  • Liu, Q. F.; Ren, W. C.; Chen, Z. G.; Yin, L. C.; Li, F.; Cong, H. T.; Cheng, H. M. Semiconducting Properties of Cup-Stacked Carbon Nanotubes. Carbon 2009, 47, 731–736. DOI: 10.1016/j.carbon.2008.11.005.
  • Li, Y.; Liu, H. P.; Yang, C. Y.; Zhu, M.; Chen, T. P. The Activation and Hydrogen Storage Characteristics of the Cup-Stacked Carbon Nanotubes. Diam. Relat. Mater. 2019, 100, 107567. DOI: 10.1016/j.diamond.2019.107567.
  • Kaskun, S.; Kayfeci, M. The Synthesized Ni-Doped Multi-Walled Carbon Nanotubes for Hydrogen Storage under Moderate Pressures. Int. J. Hydro. Energy 2018, 43, 10773–10778. DOI: 10.1016/j.ijhydene.2018.01.084.
  • Wang, L. P.; Fu, L.; Li, J. S.; Zeng, X. G.; Xie, H. L.; Huang, X. B.; Wang, H. Y.; Tang, Y. G. On an Easy Way to Prepare Highly Efficient Fe/N-Codoped Carbon Nanotube/Nanoparticle Composite for Oxygen Reduction Reaction in Al-Air Batteries. J. Mater. Sci. 2018, 53, 10280–10291. DOI: 10.1007/s10853-018-2245-0.
  • Zhang, C.; Li, J.; Shi, C.; He, C.; Liu, E.; Zhao, N. Effect of Ni, Fe and Fe-Ni Alloy Catalysts on the Synthesis of Metal Contained Carbon Nano-Onions and Studies of Their Electrochemical Hydrogen Storage Properties. J. Energy. Chem 2014, 23, 324–330. DOI: 10.1016/S2095-4956(14)60154-6.
  • Endo, M.; Kim, Y. A.; Ezaka, M.; Osada, K.; Yanagisawa, T.; Hayashi, T.; Terrones, M.; Dresselhaus, M. S. Selective and Efficient Impregnation of Metal NPs on Cup-Stacked-Type Carbon Nanofibers. Nano Lett. 2003, 3, 723–726. DOI: 10.1021/nl034136h.
  • Wang, L.; Yang, R. T. Hydrogen Storage Properties of Carbons Doped with Ruthenium Platinum, and Ni NPs. J. Phys. Chem. C. 2008, 112, 12486–12494. DOI: 10.1021/jp803093w.
  • Chen, L.; Xia, K. S.; Huang, L. Z.; Li, L. W.; Pei, L. B.; Fei, S. X. Facile Synthesis and Hydrogen Storage Application of Nitrogen-Doped Carbon Nanotubes with Bamboolike Structure. Int. J. Hydro. Energy 2013, 38, 3297–3303. DOI: 10.1016/j.ijhydene.2013.01.055.
  • Toda, I.; Komatsu, K.; Watanabe, T.; Toda, H.; Akasaka, H.; Ohshio, S.; Saitoh, H. Effect of Meso- and Micropore Structures on the Hydrogen Storage Properties of Nanoporous Carbon Materials. J. Porous Mater. 2018, 25, 1765–1770.
  • Lee, S.; Park, S. Effect of Temperature on Activated Carbon Nanotubes for Hydrogen Storage Behaviors. Int. J. Hydro. Energy 2010, 35, 6757–6762. DOI: 10.1016/j.ijhydene.2010.03.114.
  • Carraro, P. M.; García Blanco, A. A.; Lener, G.; Barrera, D.; Amaya-Roncancio, S.; Chanquía, C.; Troiani, H.; Oliva, M. I.; Eimer, G. A. Nanostructured Carbons Modified with Ni as Potential Novel Reversible Hydrogen Storage Materials: effects of Ni Particle Size. Micropor. Mesopor. Mat. 2019, 273, 50–59.
  • Li, Y. W.; Yang, R. T. Hydrogen Storage on Platinum NPs Doped on Superactivated Carbon. J. Phys. Chem. C. 2007, 111, 11086–11094. DOI: 10.1021/jp072867q.
  • Yang, R. T.; Wang, Y. H. Catalyzed Hydrogen Spillover for Hydrogen Storage. J. Am. Chem. Soc. 2009, 131, 4224–4226. DOI: 10.1021/ja808864r.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.