462
Views
14
CrossRef citations to date
0
Altmetric
Articles

Production and characterization of carbon-based adsorbents from waste lignocellulosic biomass: their effectiveness in heavy metal removal

, &
Pages 769-780 | Received 19 Mar 2020, Accepted 20 Apr 2020, Published online: 28 Apr 2020

References

  • Gloag, D. Sources of Lead Pollution. Br. Med. J. 1981, 282, 41–44. DOI: 10.1136/bmj.282.6257.41.
  • Meena, A. J.; Mishra, G. K.; Rai, P. K.; Rajagopal, C.; Nagar, P. N. Removal of Heavy Metal Ions from Aqueous Solutions Using Carbon Aerogel as an Adsorbent. J. Hazard. Mater. 2005, 122, 161–170. DOI: 10.1016/j.jhazmat.2005.03.024.
  • Gaouar-Yadi, M.; Tizaoui, K.; Gaouar-Benyelles, N.; Benguella, B. Efficient and Eco-Friendly Adsorption Using Low-Cost Natural Sorbents in Waste Water Treatment. Indian J. Chem. Technol. 2016, 23, 204–209.
  • Tripathi, M.; Sahu, J. N.; Ganesan, P. Effect of Process Parameters on Production of Biochar from Biomass Waste through Pyrolysis: A Review. Renewable Sustainable Energy Rev. 2016, 55, 467–481. DOI: 10.1016/j.rser.2015.10.122.
  • Küçük, M. M.; Demirbaş, A. Biomass Conversion Processes. Energy Convers. Manage. 1997, 38, 151–165. DOI: 10.1016/0196-8904(96)00031-3.
  • Groscurth, H. M.; Almeida, A. D.; Bauen, A.; Costa, F. B.; Ericson, S. O.; Giegrich, J. Total Costs and Benefits of Biomass in Selected Regions of the European Union. Energy 2000, 25, 1081–1095. DOI: 10.1016/S0360-5442(00)00016-5.
  • Dawood, S.; Sen, T. K.; Phan, C. Synthesis and Characterization of Slow Pyrolysis Pine Cone Bio-Char in the Removal of Organic and Inorganic Pollutants from Aqueous Solution by Adsorption: Kinetic, Equilibrium, Mechanism and Thermodynamic. Bioresour. Technol. 2017, 246, 76–81. DOI: 10.1016/j.biortech.2017.07.019.
  • Dowlatshahi, S.; Torbati, A. R. H.; Loloei, M. Adsorption of Copper, Lead and Cadmium from Aqueous Solutions by Activated Carbon Prepared from Saffron Leaves. Environ. Health Eng. Manage. J. 2014, 1, 37–44.
  • Gonçalves, G. C.; Pereira, N. C.; Veit, M. T. Production of Bio-Oil and Activated Carbon from Sugarcane Bagasse and Molasses. Biomass Bioenergy 2016, 85, 178–185. DOI: 10.1016/j.biombioe.2015.12.013.
  • Masiya, T. T.; Gudyanga, F. P. Investigation of Granular Activated Carbon from Peach Stones for Gold Adsorption in Acidic Thiourea. Hydrometallurgy Conf. 2009, 465–474.
  • Shen, B.; Tian, L.; Li, F.; Zhang, X.; Xu, H.; Singh, S. Elemental Mercury Removal by the Modified Bio-Char from Waste Tea. Fuel 2017, 187, 189–196. DOI: 10.1016/j.fuel.2016.09.059.
  • Vukelic, D.; Boskovic, N.; Agarski, B.; Radonic, J.; Budak, I.; Pap, S.; Sekulic, M. T. Eco-Design of a Low-Cost Adsorbent Produced from Waste Cherry Kernels. J. Cleaner Prod. 2018, 174, 1620–1628. DOI: 10.1016/j.jclepro.2017.11.098.
  • Yi, Z. J.; Yao, J.; Wang, F.; Chen, H. L.; Liu, H. J.; Yu, C. Removal of Uranium(VI) from Aqueous Solution by Apricot Shell Activated Carbon. J. Radioanal. Nucl. Chem. 2013, 295, 2029–2034. DOI: 10.1007/s10967-012-2277-x.
  • Shrestha, R. M.; Pradhananga, R. R.; Varga, M.; Varga, I. Preparation of Activated Carbon for the Removal of Pb(II) from Aqueous Solutions. J. Nepal Chem. Soc. 2013, 28, 94–101. DOI: 10.3126/jncs.v28i0.8114.
  • Gaya, U. I.; Otene, E.; Abdullah, A. H. Adsorption of Aqueous Cd(II) and Pb(II) on Activated Carbon Nanopores Prepared by Chemical Activation of Doum Palm Shell. SpringerPlus 2015, 4, 1–18. DOI: 10.1186/s40064-015-1256-4.
  • Balasundram, V.; Ibrahim, N.; Kasmani, R. M.; Hamid, M. K. A.; Isha, R.; Hasbulla, H.; Rasit Ali, R. Thermogravimetric Catalytic Pyrolysis and Kinetic Studies of Coconut Copra and Rice Husk for Possible Maximum Production of Pyrolysis Oil. J. Cleaner Prod. 2017, 167, 218–228. DOI: 10.1016/j.jclepro.2017.08.173.
  • Muhammad, S. A.; Muhammad, A. M.; Ayed, O. S.; Ye, G. B.; Luo, H.; Ibrahim, M.; Rashid, U.; Arbi, I.; Qadir, N. G. Kinetic Analyses and Pyrolytic Behavior of Para Grass (Urochloa Mutica) for Its Bioenergy Potential. Bioresour. Technol. 2017, 224, 708–713. DOI: 10.1016/j.biortech.2016.10.090.
  • Saidur, R.; Abdelaziz, E. A.; Demirbas, A.; Hossain, M. S.; Mekhilef, S. A Review on Biomass as a Fuel for Boilers. Renewable Sustainable Energy Rev. 2011, 15, 2262–2289. DOI: 10.1016/j.rser.2011.02.015.
  • Soyler, N.; Goldfarb, J. L.; Ceylan, S.; Saçan, M. T. Renewable Fuels from Pyrolysis of Dunaliella Tertiolecta: An Alternative Approach to Biochemical Conversions of Microalgae. Energy 2017, 120, 907–908. DOI: 10.1016/j.energy.2016.11.146.
  • Jian, X.; Zhuang, X.; Li, B.; Xu, X.; Wei, Z.; Song, Y.; Jiang, E. Comparison of Characterization and Adsorption of Biochars Produced from Hydrothermal Carbonization and Pyrolysis. Environ. Technol. Innovation 2018, 10, 27–35. DOI: 10.1016/j.eti.2018.01.004.
  • Ceylan, S.; Topcu, Y. Pyrolysis Kinetics of Hazelnut Husk Using Thermogravimetric Analysis. Bioresour. Technol. 2014, 156, 182–188. DOI: 10.1016/j.biortech.2014.01.040.
  • Mehmood, M. A.; Ye, G.; Luo, H.; Liu, C.; Malik, S.; Afzal, I.; Xu, J.; Ahmad, M. S. Pyrolysis and Kinetic Analyses of Camel Grass (Cymbopogon Schoenanthus) for Bioenergy. Bioresour. Technol. 2017, 228, 18–24. DOI: 10.1016/j.biortech.2016.12.096.
  • Liu, S.; Chen, X.; Liu, A.; Wang, L.; Yu, G. Co-Pyrolysis Characteristic of Biomass and Bituminous Coal. Bioresour. Technol. 2015, 179, 414–420. DOI: 10.1016/j.biortech.2014.12.025.
  • Odeh, A. O. Oualitative and Quantitative ATR-FTIR Analysis and Its Application to Coal Char of Different Ranks. J. Fuel Chem. Technol. 2015, 43, 129–137. DOI: 10.1016/S1872-5813(15)30001-3.
  • Plis, A.; Lasek, J.; Skawińska, A.; Zuwała, J. Thermochemical and Kinetic Analysis of the Pyrolysis Process in Cladophora Glomerata Algae. J. Anal. Appl. Pyrolysis 2015, 115, 166–174. DOI: 10.1016/j.jaap.2015.07.013.
  • Niu, Z.; Liu, G.; Yin, H.; Wu, D.; Zhou, C. Investigation of Mechanism and Kinetics of Non-Isothermal Low Temperature Pyrolysis of Perhydrous Bituminous Coal by in-Situ FTIR. Fuel 2016, 172, 1–10. DOI: 10.1016/j.fuel.2016.01.007.
  • Kim, J. W.; Sohn, M. H.; Kim, D. S.; Sohn, S. M.; Kwon, Y. S. Production of Granular Activated Carbon from Waste Walnut Shell and Its Adsorption Characteristics for Cu2+ Ion. J. Hazard. Mater. 2001, 85, 301–315. DOI: 10.1016/S0304-3894(01)00239-4.
  • Demiral, I.; Aydın Şamdan, C. Preparation and Characterisation of Activated Carbon from Pumpkin Seed Shell Using H3PO4. Anadolu Univ. J. Sci. Technol. A-Appl. Sci. Eng. 2016, 17, 125–138.
  • Barbosa, J. J. M.; Velandia, C. L.; Maldonado, A. P.; Giraldo, L.; Pirajan, J. C. M. Removal of Lead(II) and Zinc(II) Ions from Aqueous Solutions by Adsorption onto Activated Carbon Synthesized from Watermelon Shell and Walnut Shell. Adsorption 2013, 19, 675–685. DOI: 10.1007/s10450-013-9491-x.
  • Doğan, M.; Abak, H.; Alkan, M. Adsorption of Methylene Blue onto Hazelnut Shell: Kinetic, Mechanism and Activation Parameters. J. Hazard. Mater. 2009, 164, 172–181. DOI: 10.1016/j.jhazmat.2008.07.155.
  • Imamoglu, M.; Öztürk, A.; Aydın, Ş.; Manzak, A.; Gündoğdu, A.; Duran, C. Adsorption of Cu(II) Ions from Aqueous Solution by Hazelnut Husk Activated Carbon Prepared with Potassium Acetate. J. Dispersion Sci. Technol. 2018, 39, 1144–1148. DOI: 10.1080/01932691.2017.1385479.
  • Safinejad, A.; Chamjangali, M. A.; Goudarzi, N.; Bagherian, G. Synthesis and Characterization of a New Magnetic Bio-Adsorbent Using Walnut Shell Powder and Its Application in Ultrasonic Assisted Removal of Lead. J. Environ. Chem. Eng. 2017, 5, 1429–1437. DOI: 10.1016/j.jece.2017.02.027.
  • Castilla, C. M. Adsorption of Organic Molecules from Aqueous Solutions on Carbon Materials. Carbon 2004, 42, 83–94.
  • Jonasi, V.; Matina, K.; Guyo, U. Removal of Pb(II) and Cd(II) from Aqueous Solution Using Alkaline-Modied Pumice Stone Powder (PSP): Equilibrium, Kinetic, and Thermodynamic Studies. Turk. J. Chem. 2017, 41, 748–759. DOI: 10.3906/kim-1701-40.
  • Kaur, S.; Rani, S.; Mahajan, R. K. Adsorption Kinetics for the Removal of Hazardous Dye Congo Red by Biowaste Materials as Adsorbents. J. Chem. 2013, 2013, 1–12. DOI: 10.1155/2013/628582.
  • Chowdhury, S.; Chakraborty, S.; Saha, P. Biosorption of Basic Green 4 from Aqueous Solution by Ananas Comosus(Pineapple) Leaf Powder. Colloids Surf, B 2011, 84, 520–527. DOI: 10.1016/j.colsurfb.2011.02.009.
  • Bulut, Y.; Aydın, H. A. Kinetics and Thermodynamics Study of Methylene Blue Adsorption on Wheat Shells. Desalination 2006, 194, 259–267. DOI: 10.1016/j.desal.2005.10.032.
  • Bulut, Y.; Gözübenli, N.; Aydın, H. Equilibrium and Kinetics Studies for Adsorption of Direct Blue 71 from Aqueous Solution by Wheat Shells. J. Hazard. Mater. 2007, 144, 300–306. DOI: 10.1016/j.jhazmat.2006.10.027.
  • Changmai, M.; Banerjee, P.; Nahar, K.; Purkait, M. K. A Novel Adsorbent from Carrot, Tomato and Polyethylene Terephthalate Waste as a Potential Adsorbent for Co(II) from Aqueous Solution: Kinetic and Equilibrium Studies. J. Environ. Chem. Eng. 2018, 6, 246–257. DOI: 10.1016/j.jece.2017.12.009.
  • Ruthiraan, M.; Abdullah, E. C.; Mubarak, N. M.; Noraini, M. N. A Promising Route of Magnetic Based Materials for Removal of Cadmium and Methylene Blue from Waste Water. J. Environ. Chem. Eng. 2017, 5, 1447–1455. DOI: 10.1016/j.jece.2017.02.038.
  • Lemraski, E. H.; Sharafinia, S. Kinetics, Equilibrium and Thermodynamics Studies of Pb2+ Adsorption onto New Activated Carbon Prepared from Persian Mesquite Grain. J. Mol. Liq. 2016, 219, 482–492. DOI: 10.1016/j.molliq.2016.03.031.
  • Thajeel, A. S. Isotherm, Kinetic and Thermodynamic of Adsorption of Heavy Metal Ions onto Local Activated Carbon. Ast. 2013, 1, 53–77. DOI: 10.5296/ast.v1i2.3763.
  • Dada, A. O.; Olalekan, A. P.; Olatunya, A. M.; Dada, O. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ onto Phosphoric Acid Modified Rice Husk. IOSR J. Appl. Chem. 2012, 3, 38–45.
  • Şencan, A.; Karaboyacı, M.; Kılıç, M. Determination of Lead(II) Sorption Capacity of Hazelnut Shell and Activated Carbon Obtained from Hazelnut Shell Activated with ZnCl2. Environ. Sci. Pollut. Res. 2015, 22, 3238–3248. DOI: 10.1007/s11356-014-2974-9.
  • Qin, J. J.; Wai, M. N.; Oo, M. H.; Wong, F. S. A Feasibility Study on the Treatment and Recycling of a Wastewater from Metal Plating. J. Membr. Sci. 2002, 208, 213–221. DOI: 10.1016/S0376-7388(02)00263-6.
  • Wang, L. K.; Hung, Y. T.; Lo, H. H.; Yapijakis, C. Handbook of Industrial and Hazardous Wastes Treatment; CRC Press: Newyork, 2004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.