304
Views
18
CrossRef citations to date
0
Altmetric
Articles

Study on preparation and performance of Ru-Fe/GO catalyst for sodium borohydride alcoholysis to produce hydrogen

, , & ORCID Icon
Pages 786-793 | Received 21 Apr 2020, Accepted 22 Apr 2020, Published online: 29 Apr 2020

References

  • Pottmaier, D.; Pistidda, C.; Groppo, E.; Bordiga, S.; Spoto, G.; Dornheim, M.; Baricco, M. Dehydrogenation Reactions of 2NaBH4 þ MgH2system. Int. J. Hydrogen Energy 2011, 36, 7891–7896. DOI: 10.1016/j.ijhydene.2011.01.059.
  • Liu, C. H.; Chen, B. H.; Lee, D. J.; Ku, J. R.; Tsau, F. H. Trimethyl Borate Regenerated from Spent Sodium Borohydride after Hydrogen Production. Ind. Eng. Chem. Res. 2010, 49, 9864–9869. DOI: 10.1021/ie101309f.
  • Shen, X.; Wang, Q.; Guo, S.; Liu, B.; Sun, Z.; Zhang, Z.; Wang, Z.; Zhao, B.; Ding, W. W-Modified CoB Supported on Ag-Activated TiO2, for Hydrogen Generation from Alkaline NaBH4 Solution. Int. J. Hydrogen Energy 2015, 40, 6346–6357. DOI: 10.1016/j.ijhydene.2015.03.092.
  • Liang, J.; Li, Y.; Huang, Y.; Yang, J.; Tang, H.; Wei, Z.; Shen, P. K. Sodium Borohydride Hydrolysis on Highly Efficient Co–B/Pd Catalysts. Int. J. Hydrogen Energy 2008, 33, 4048–4054. DOI: 10.1016/j.ijhydene.2008.05.082.
  • Larichev, Y. V.; Netskina, O. V.; Komova, O. V.; Simagina, V. I. Comparative XPS Study of Rh/Al2O3 and Rh/TiO2 as Catalysts for NaBH4 Hydrolysis. Int. J. Hydrogen Energy 2010, 35, 6501–6507. DOI: 10.1016/j.ijhydene.2010.04.048.
  • Amendola, S. C.; Sharp-Goldman, S. L.; Janjua, M. S. A Safe, Portable, Hydrogen Gas Generator Using Aqueous Borohydride Solution and Ru Catalyst. Int. J. Hydrogen Energy 2000, 25, 969–975. DOI: 10.1016/S0360-3199(00)00021-5.
  • Chen, C. W.; Chen, C. Y.; Huang, Y. H. Method of Preparing Ru-Immobilized Polymer-Supported Catalyst for Hydrogen Generation from NaBH4 Solution. Int. J. Hydrogen Energy 2009, 34, 2164–2173. DOI: 10.1016/j.ijhydene.2008.12.077.
  • Hsueh, C.-L.; Chen, C.-Y.; Ku, J.-R.; Tsai, S.-F.; Hsu, Y.-Y.; Tsau, F.; Jeng, M.-S. Simple and Fast Fabrication of Polymer template-Ru Composite as a Catalyst for Hydrogen Generation from Alkaline NaBH4 Solution. J. Power Sources 2008, 177, 485–492. DOI: 10.1016/j.jpowsour.2007.11.096.
  • Wang, F.; Wang, Y.; Zhang, Y.; Luo, Y.; Zhu, H. Highly Dispersed RuCo Bimetallic Nanoparticles Supported on Carbon Black: enhanced Catalytic Activity for Hydrogen Generation from NaBH4 Methanolysis. J. Mater. Sci. 2018, 53, 6831–6841. DOI: 10.1007/s10853-018-2013-1.
  • Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. DOI: 10.1021/nn1006368.
  • Li, X.; Fan, G.; Zeng, C. Synthesis of Ruthenium Nanoparticles Deposited on Graphene-like Transition Metal Carbide as an Effective Catalyst for the Hydrolysis of Sodium Borohydride. Int. J. Hydrogen Energy 2014, 39, 14927–14934. DOI: 10.1016/j.ijhydene.2014.07.029.
  • Zhang, H.; Feng, X.; Cheng, L.; Hou, X.; Li, Y.; Han, S. Non-Noble Co Anchored on Nanoporous Graphene Oxide, as an Efficient and Long-Life Catalyst for Hydrogen Generation from Sodium Borohydride. Colloids Surf, A. 2019, 563, 112–119. DOI: 10.1016/j.colsurfa.2018.12.002.
  • Syed, N. A.; Nidhi, S.; Lailesh, K. Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO). Graphene 2017, 6, 1–18.
  • Wang, F. H.; Luo, Y. M.; Wang, Y. N.; Zhu, H. The Preparation and Performance of a Novel Spherical Spider Web-like Structure Ru-Ni/Ni Foam Catalyst for NaBH4 Methanolysis. Int. J. Hydrogen Energy 2019, 44, 13185–13194. DOI: 10.1016/j.ijhydene.2019.01.123.
  • Wang, F.; Zhang, Y.; Wang, Y.; Luo, Y.; Chen, Y.; Zhu, H. Co-P Nanoparticles Supported on Dandelion-like CNTs-Ni Foam Composite Carrier as a Novel Catalyst for Hydrogen Generation from NaBH4 Methanolysis. Int. J. Hydrogen Energy 2018, 43, 8805–8814. DOI: 10.1016/j.ijhydene.2018.03.140.
  • Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational High-Throughput Screening of Electrocatalytic Materials for Hydrogen Evolution. Nature Mater. 2006, 5, 909–913. DOI: 10.1038/nmat1752.
  • Sun, D.; Mazumder, V.; Metin, Ö.; Sun, S. Catalytic Hydrolysis of Ammonia Borane via Cobalt Palladium Nanoparticles. ACS Nano 2011, 5, 6458–6464. DOI: 10.1021/nn2016666.
  • Lu, D.; Yu, G.; Li, Y.; Chen, M.; Pan, Y.; Zhou, L.; Yang, K.; Xiong, X.; Wu, P.; Xia, Q. RuCo NPs Supported on MIL-96(Al) as Highly Active Catalysts for the Hydrolysis of Ammonia Borane. J. Alloys Compd. 2017, 694, 662–671. DOI: 10.1016/j.jallcom.2016.10.055.
  • Yamashita, T.; Hayes, P. Analysis of XPS Spectra of Fe2+ and Fe3+ Ions in Oxide Materials. Appl. Surf. Sci. 2008, 254, 2441–2449.
  • Liang, Y.; Wang, P.; Dai, H.-B. Hydrogen Bubbles Dynamic Template Preparation of a Porous Fe–Co–B/Ni Foam Catalyst for Hydrogen Generation from Hydrolysis of Alkaline Sodium Borohydride Solution. J. Alloys Compd. 2010, 491, 359–365. DOI: 10.1016/j.jallcom.2009.10.183.
  • Baydaroglu, F. O.; Zdemir, E.; Gürek, A. G. Ruthenium Nanoparticles Immobilized on Surfactant-Directed Polypyrrole as an Effective and Reusable Catalyst for Hydrogen Generation. Reac. Kinet. Mech. Cat. 2017, 122, 575–591.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.