147
Views
6
CrossRef citations to date
0
Altmetric
Articles

Catalytic activity of hybrid platinum nanoparticle-[C60]fullerene nanowhisker composites for 4-nitrophenol reduction

, , &
Pages 794-798 | Received 24 Apr 2020, Accepted 25 Apr 2020, Published online: 12 May 2020

References

  • Sanders, W. C. Basic Principle of Nanotechnology; CRC Press, Taylor &Francis Group Ltd.: UK, 2019; pp 97–98.
  • Ko, J. W.; Ko, W. B. Catalytic Activity for Reduction of 4-Nitrophenol with [C60]Fullerene Nanowhisker-Silver Nanoparticle Composites. Mater. Trans. 2016, 57, 2122–2126. DOI: 10.2320/matertrans.M2016214.
  • Yang, T.; Du, M.; Zhang, M.; Zhu, H.; Wang, P.; Zou, M. Synthesis and Immobilization of Pt Nanoparticles on Amino-Functionalized Halloysite Nanotubes toward Highly Active Catalysts. Nanomater. Nanotechnol. 2015, 5, 4. DOI: 10.5772/60112.
  • Ataee-Esfahani, H.; Wang, L.; Nemoto, Y.; Yamauchi, Y. Synthesis of Bimetallic Au@Pt Nanoparticles with Au Core and Nanostructured Pt Shell toward Highly Active Electrocatalysts. Chem. Mater. 2010, 22, 6310–6318. DOI: 10.1021/cm102074w.
  • Miyazawa, K.; Yoshitake, M.; Tanaka, Y. Characterization of Platinum Nanoparticles Deposited on C60 Fullerene Nanowhiskers. Surf. Eng. 2018, 34, 846–851. DOI: 10.1080/02670844.2017.1396779.
  • Miyazawa, K.; Yoshitake, M.; Tanaka, Y. HRTEM Analyses of the Platinum Nanoparticles Prepared on Graphite Particles Using Coaxial Arc Plasma Deposition. J. Nanopart. Res. 2017, 19, 191–199. DOI: 10.1007/s11051-017-3895-6.
  • Mavrikakis, M.; Hammer, B.; Norskov, K. Effect of Strain on the Reactivity of Metal Surface. Phys. Rev. Lett. 1998, 81, 2819–2822. DOI: 10.1103/PhysRevLett.81.2819.
  • Wang, J. X.; Inada, H.; Wu, L.; Zhu, Y.; Choi, Y.; Liu, P.; Zhou, W.-P.; Adzic, R. R. Oxygen Reduction on Well-Defined Core-Shell Nanocatalysts: Particle Size, Facet, and Pt Shell Thickness Effects. J. Am. Chem. Soc. 2009, 131, 17298–17302. DOI: 10.1021/ja9067645.
  • Li, H.; Jo, J. K.; Zhang, L.; Ha, C. S.; Suh, H.; Kim, I. L. A General and Efficient Route to Fabricate Carbon Nanotube-Metal Nanoparticles and Carbon Nanotube Inorganic Oxides Hybrids. Adv. Funct. Mater. 2010, 20, 3864–3873. DOI: 10.1002/adfm.201001067.
  • Zhang, M.; Liu, L.; Wu, C.; Fu, G.; Zhao, H.; He, B. Synthesis, Characterization and Application of Well-Defined Environmentally Responsive Polymer Brushes on the Surface of Colloid Particles. Polymer 2007, 48, 1989–1997. DOI: 10.1016/j.polymer.2007.01.069.
  • Jana, S.; Ghosh, S. K.; Nath, S.; Pande, S.; Raharaj, S.; Panigrahi, S.; Basu, S.; Endo, T.; Pal, T. Synthesis of Silver Nanoshell-Coated Cationic Polystyrene Beads: A Solid Phase Catalyst for the Reduction of 4-Nitrophenol. Appl. Catal. A 2006, 313, 41–48. DOI: 10.1016/j.apcata.2006.07.007.
  • Németh, T.; Jankovics, P.; Németh-Palotás, J.; Kőszegi-Szalai, H. J. Determination of Paracetamol and Its Main Impurity 4-Aminophenol in Analgesic Preparations by Micellar Electro Kinetic Chromatography. Pharm. Biomed. Anal. 2008, 47, 746–749. DOI: 10.1016/j.jpba.2008.03.003.
  • Meneses, E. R.; Huerta, A. T.; Crespo, M. A. D.; Palma, V. M. Dispersed Stabilized Pt Nanoparticles Synthesized from an Organometallic Precursor on Carbon Nanotubes. In NSTI-Nanotech, 2009; Vol. 1, pp. 360–363. www.nsti.org.
  • Revathi, K.; Palantavida, S.; Vijayan, B. K. Effective Reduction of p-Nitroaniline to p-Phenylenediamine Using Cu-CuO Nanocomposite. Mater. Today 2019, 9, 633–638. DOI: 10.1016/j.matpr.2018.10.386.
  • Bhui, D. K.; Misra, A. Synthesis of Worm Like Silver Nanoparticles in Methyl Cellulose Polymeric Matrix and Its Catalytic Activity. Carbohydr. Polym. 2012, 89, 830–835. DOI: 10.1016/j.carbpol.2012.04.017.
  • Imura, Y.; Tsujimoto, K.; Morita, C.; Kawai, T. Preparation and Catalytic Activity of Pd and Bimetallic Pd–Ni Nanowires. Langmuir 2014, 30, 5026–5030. DOI: 10.1021/la500811n.
  • Ko, J. W.; Li, J.; Ko, W. B. Preparation of [C60]Fullerene Nanowhisker-Gold Nanoparticle Composites and Reduction of 4-Nitrophenol through Catalysis. Nanomater. Nanotechnol. 2015, 5, 37. DOI: 10.5772/6208610.
  • Noh, J.-H.; Meijboom, R. Catalytic Evaluation of Dendrimer-Templated Pd Nanoparticles in Reduction of 4-Nitrophenol Using Langmuir-Hinshelwood Kinetics. Appl. Surf. Sci. 2014, 320, 400–413. DOI: 10.1016/j.apsusc.2014.09.058.
  • Sahiner, N.; Ozay, H.; Ozay, O.; Aktas, N. New Catalytic Route: Hydrogels as Templates and Reactors for In Situ Ni Nanoparticle Synthesis and Usage in the Reduction of 2- and 4-Nitrophenols. Appl. Catal. A 2010, 385, 201–207. DOI: 10.1016/j.apcata.2010.07.004.
  • Sahiner, N.; Sagbas, S.; Aktas, N. Very Fast Catalytic Reduction of 4-Nitro Phenol, Methylene Blue and Eosin Y in Natural Waters Using Green Chemistry: p(Tannic Acid)-Cu Ionic Liquid Composites. RSC Adv. 2015, 5, 18183–18195. DOI: 10.1039/c5ra00126a.
  • Sahiner, N.; Karakoyun, N.; Alpaslan, D.; Aktas, N. Biochar-Embedded Soft Hydrogel and Their Use in Ag Nanoparticle Preparation and Reduction of 4-Nitro Phenol. Int. J. Polym. Mater. Polym. Biomater. 2013, 62, 590–595. DOI: 10.1080/00914037.2013.769163.
  • Ko, J. W.; Ko, W. B. Synthesis of Bipyramidal Gold Nanoparticle-[C60]Fullerene Nanowhisker Composites and Catalytic Reduction of 4-Nitrophenol. Fuller. Nanotub. Carbon Nanostruct. 2017, 25, 710–715. DOI: 10.1080/1536383x.2017.1377698.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.