146
Views
6
CrossRef citations to date
0
Altmetric
Articles

Tetra-substituted cobalt (II) phthalocyanine/multi-walled carbon nanotubes as new efficient catalyst for the selective oxidation of styrene using tert-butyl hydroperoxide

, , , , , & show all
Pages 799-807 | Received 29 Feb 2020, Accepted 27 Apr 2020, Published online: 07 May 2020

References

  • Tyagi, B.; Shaik, B.; Bajaj, H. C. Epoxidation of Styrene with Molecular O2 over Sulfated Y-ZrO2 Based Solid Catalysts. Appl. Catal. A Gen. 2010, 383, 161–168. DOI: 10.1016/j.apcata.2010.05.038.
  • Sakthivel, B.; Josephine, D. S. R.; Sethuraman, K.; Dhakshinamoorthy, A. Oxidation of Styrene Using TiO2-Graphene Oxide Composite as Solid Heterogeneous Catalyst with Hydroperoxide as Oxidant. Catal. Commun 2018, 108, 41–45. DOI: 10.1016/j.catcom.2018.01.029.
  • Masunga, N.; Tito, G. S.; Meijboom, R. Catalytic Evaluation of Mesoporous Metal Oxides for Liquid Phase Oxidation of Styrene. Appl. Catal. A Gen. 2018, 552, 154–167. DOI: 10.1016/j.apcata.2017.12.010.
  • Cui, H.; Zhang, Y.; Qiu, Z. G.; Zhao, L. F.; Zhu, Y. L. Synthesis and Characterization of Cobalt-Substituted SBA-15 and Its High Activity in Epoxidation of Styrene with Molecular Oxygen. Appl. Catal. B: Environ. 2010, 101, 45–53. DOI: 10.1016/j.apcatb.2010.09.003.
  • Godhani, D. R.; Nakum, H. D.; Parmar, D. K.; Mehta, J. P.; Desai, N. C. Zeolite Y Encaged Ru(III) and Fe(III) Complexes for Oxidation of Styrene, Cyclohexene, Limonene, and α-Pinene: An Eye-Catching Impact of H2SO4 on Product Selectivity. J. Mol. Catal. A: Chem. 2017, 426, 223–237. DOI: 10.1016/j.molcata.2016.11.020.
  • Wang, A. Q.; Jing, H. W. Tunable Catalytic Activities and Selectivities of Metal Ion Doped TiO2 Nanoparticles-Oxidation of Organic Compounds. Dalton Trans. 2014, 43, 1011–1018. DOI: 10.1039/C3DT51987B.
  • Sheldon, R. A.; Dakka, J. Heterogeneous Catalytic Oxidations in the Manufacture of Fine Chemicals. Catal. Today 1994, 19, 215–245. DOI: 10.1016/0920-5861(94)80186-X.
  • Qi, Y.; Luan, Y.; Yang, M.; Wang, G.; Tan, L.; Li, J. Alkali Concentration-Dependent Tailoring of Highly Controllabletitanate Nanostructures: From Yolk-Shell, Hollow 3D Nanospheresto 1D Nanowires. Appl. Surf. Sci. 2014, 293, 359–365. DOI: 10.1016/j.apsusc.2013.12.170.
  • Li, Q.; Ju, L.; Lu, M.; Zhang, Y.; Xu, S.; Li, Z. Significant Improvement of Styrene Oxidation over Mononuclear/Binuclear Carboxyl Metal Phthalocyanine-Attapulgite Composites. Fullerenes Nanotubes Carbon Nanostruct. 2018, 26, 791–798. DOI: 10.1080/1536383X.2018.1492559.
  • Nongwe, I.; Ravat, V.; Meijboom, R.; Coville, N. J. Efficient and Reusable Co/Nitrogen Doped Hollow Carbon Sphere Catalysts for the Aerobic Oxidation of Styrene. Appl. Catal. A: Gen. 2013, 466, 1–8. DOI: 10.1016/j.apcata.2013.06.014.
  • Pardeshi, S. K.; Pawar, R. Y. SrFe2O4 Complex Oxide an Effective and Environmentally Benign Catalyst for Selective Oxidation of Styrene. J. Mol. Catal. A: Chem. 2011, 334, 35–43. DOI: 10.1016/j.molcata.2010.10.020.
  • Li, Q. P.; Sun, Z.; Liang, Q.; Zhou, M.; Xu, S.; Li, Z. Y.; Sun, D. Z. Novel Tetrasubstituted Zinc Phthalocyanine-Attapulgite Composites for Efficient Catalytic Oxidation of Styrene with Tert-Butyl Hydroperoxide as Oxidant. Solid State Sci. 2019, 97, 106010. DOI: 10.1016/j.solidstatesciences.2019.106010.
  • Liu, H.; Wang, Z. G.; Hu, H. J.; Liang, Y. G.; Wang, M. Y. Synthesis and Characterization of Cr-MSU-1 and Its Catalytic Application for Oxidation of Styrene. J. Solid State Chem. 2009, 182, 1726–1732. DOI: 10.1016/j.jssc.2009.03.033.
  • Paula, R. D.; Simões, M. M. Q.; Neves, M. G. P. M. S.; Cavaleiro, J. A. S. Oxidation of Styrene and of Some Derivatives with H2O2 Catalyzed by Novel Imidazolium-Containing Manganese Porphyrins: A Mechanistic and Thermodynamic Interpretation. J. Mol. Catal. A: Chem. 2011, 345, 1–11. DOI: 10.1016/j.molcata.2011.05.013.
  • Pal, P.; Pahari, S.; Sinhamahapatra, A.; Jayachandran, M.; Kiruthika, G. V. M.; Bajaj, H. C.; Panda, A. B. CeO2 Nanowires with High Aspect Ratio and Excellent Catalytic Activity for Selective Oxidation of Styrene by Molecular Oxygen. RSC Adv. 2013, 3, 10837–10847. DOI: 10.1039/c3ra23485a.
  • Sharma, S.; Sinha, S.; Chand, S. Polymer Anchored Catalysts for Oxidation of Styrene Using TBHP and Molecular Oxygen. Ind. Eng. Chem. Res. 2012, 51, 8806–8814. DOI: 10.1021/ie201953y.
  • Ju, L. J.; Mei, J. F.; Li, Z. Y.; Xu, S. Synthesis of Tetra-Aminophthalocyanine/Graphite Composites by Chemical Grafting Method for Styrene Oxidation. Fullerenes, Nanotubes, Carbon Nanostruct. 2017, 25, 423–428. DOI: 10.1080/1536383X.2017.1326103.
  • Wang, C.; Wang, C. X.; Xu, L.; Cheng, H.; Lin, Q.; Zhang, C. Protein-Directed Synthesis of pH-Responsive Red Fluorescent Copper Nanoclusters and Their Applications in Cellular Imaging and Catalysis. Nanoscale 2014, 6, 1775–1781. DOI: 10.1039/C3NR04835G.
  • Noh, J.-H.; Patala, R.; Meijboom, R. Catalytic Evaluation of Dendrimer and Reverse Microemulsiontemplate Pd and Pt Nanoparticles for the Selective Oxidation of Styreneusing TBHP. Appl. Catal. A: Gen. 2016, 514, 253–266. DOI: 10.1016/j.apcata.2016.01.033.
  • Bottari, G.; Torre, G. D. L.; Guldi, D. M.; Torres, T. Covalent and Noncovalent Phthalocyanine-Carbon Nanostructure Systems: Synthesis, Photoinduced Electron Transfer, and Application to Molecular Photovoltaics. Chem. Rev. 2010, 110, 6768–6816. DOI: 10.1021/cr900254z.
  • Saka, E. T.; Biyiklioglu, Z.; Kantekin, H.; Kani, İ. Synthesis, Characterization and Catalytic Activity of Peripherally Tetra-Substituted Co(II) Phthalocyanines for Cyclohexene Oxidation. Appl. Organometal. Chem. 2013, 27, 59–67. DOI: 10.1002/aoc.2939.
  • Saka, E. T.; Biyiklioglu, Z. Co(II) and Fe(II) Phthalocyanines: synthesis, Investigation of Their Catalytic Activity towards Phenolic Compounds and Electrochemical Behavior. Appl. Organometal. Chem. 2015, 29, 392–399. DOI: 10.1002/aoc.3304.
  • Saka, E. T. b.; Acar, İ.; Biyiklioğ Lu, Z.; Kantekin, H.; Kani, İ. Synthesis and Characterization of Peripheral and Non-Peripheral Substituted Co(II) Phthalocyanines and Their Catalytic Activity in Styrene Oxidation. Synth. Met. 2013, 169, 12–17. DOI: 10.1016/j.synthmet.2013.02.029.
  • Zanjanchi, M. A.; Ebrahimian, A.; Arvand, M. Sulphonated Cobalt Phthalocyanine–MCM-41: An Active Photocatalyst for Degradation of 2,4-Dichlorophenol. J. Hazard. Mater. 2010, 175, 992–1000. DOI: 10.1016/j.jhazmat.2009.10.108.
  • Bata, P.; Notheisz, F.; Kluson, P.; Zsigmond, Á. Iron Phthalocyanine as New Efficient Catalyst for Catalytic Transfer Hydrogenation of Simple Aldehydes and Ketones. Appl. Organometal. Chem. 2015, 29, 45–49. DOI: 10.1002/aoc.324.
  • Shaabani, A.; Farhangi, E.; Rahmati, A. Aerobic Oxidation of Alkyl Arenes and Alcohols Using Cobalt(II) Phthalocyanine as a Catalyst in 1-Butyl-3-Methyl-Imidazolium Bromide. Appl. Catal. A: Gen. 2008, 338, 14–19. DOI: 10.1016/j.apcata.2007.12.014.
  • Kasuga, K.; Tsuboi, K.; Handa, M.; Sugimori, T.; Kunihisa, S. Oxygen-Oxygenation of Cyclohexene Catalyzed by Manganese(III), Iron(III) and Cobalt(II) Complexes of Tetra-Tert-Butylphthalocyanine in the Presence of Iso-Butyraldehyde. Inorg. Chem. Commun. 1999, 2, 507–509. DOI: 10.1016/S1387-7003(99)00135-5.
  • Seo, K.; Kim, H.; Lee, J.; Kim, M.-G.; Seo, S.; Kim, C. Cooperative Behavior of Perfluoro Carboxylic Acid on Cyclohexane Oxidation Catalyzed by μ-Nitrido Diiron Phthalocyanine Complex. J. Ind. Eng. Chem. 2017, 53, 371–374. DOI: 10.1016/j.jiec.2017.05.008.
  • Sharma, V. B.; Jain, S. L.; Sain, B. Cobalt Phthalocyanine Catalyzed Aerobic Oxidation of Secondary Alcohols: An Efficient and Simple Synthesis of Ketones. Tetrahedron Lett. 2003, 44, 383–386. DOI: 10.1016/S0040-4039(02)02453-X.
  • Seelan, S.; Agashe, M. S.; Srinivas, D.; Sivasanker, S. Effect of Peripheral Substitution on Spectral and Catalytic Properties of Copper Phthalocyanine Complexes. J. Mol. Catal. A: Chem. 2001, 168, 61–68. DOI: 10.1016/S1381-1169(00)00534-3.
  • Sehlotho, N.; Nyokong, T. Catalytic Activity of Iron and Cobalt Phthalocyanine Complexes towards the Oxidation of Cyclohexene Using Tert-Butylhydroperoxide and Chloroperoxybenzoic Acid. J. Mol. Catal. A: Chem. 2004, 209, 51–57. DOI: 10.1016/j.molcata.2003.08.014.
  • Piechocki, C.; Simon, J.; Skoulios, A.; Guillon, D.; Weber, P. Discotic Mesophases Obtained from Substituted Metallophthalocyanines. Toward Liquid Crystalline One-Dimensional Conductors1. J. Am. Chem. Soc. 1982, 104, 5245–5247. DOI: 10.1021/ja00383a050.
  • Li, Q. P.; Sun, Z.; Zhou, M.; Liang, Q.; Li, Z. Y.; Xu, S. Synthesis of Asymmetric Zinc Phthalocyanine Supported on Multi-Walled Carbon Nanotubes and Its Improvement of Catalytic Activity on Styrene Oxidation. J. Mater. Sci: Mater. Electron. 2019, 30, 6277–6386. DOI: 10.1007/s10854-019-00931-y.
  • Ragoussi, M. E.; Malig, J.; Katsukis, G.; Butz, B.; Spiecker, E.; Torre, G. D. A.; Torres, T.; Guldi, D. M. Linking Photo-and Redoxactive Phthalocyanines Covalently to Graphene. Angew. Chem. Int. 2012, 51, 6421–6425. DOI: 10.1002/ange.201201452.
  • Wan, Y.; Liang, Q.; Li, Z.; Xu, S.; Hu, X.; Liu, Q.; Lu, D. Significant Improvement of Styrene Oxidation Over Zinc Phthalocyanine Supported on Multiwalled Carbon Nanotubes. J. Mol. Catal. A 2015, 402, 29–36. DOI: 10.1016/j.molcata.2015.03.010.
  • Alvaro, M.; Carbonell, E.; Esplá, M.; Garcia, H. Iron Phthalocyanine Supported on Silica or Encapsulated inside Zeolite Y as Solid Photocatalysts for the Degradation of Phenols and Sulfur Heterocycles. Appl. Catal. B 2005, 57, 37–42. DOI: 10.1016/j.apcatb.2004.10.003.
  • Pérollier, C.; Sorokin, A. B. Preparation of a,b-Acetylenic Ketones by Catalytic Heterogeneous Oxidation of Alkynes. Chem. Commun. 2002, 1548–1549. DOI: 10.1039/B204122G.
  • Fashina, A.; Antunes, E.; Nyokong, T. Characterization and Photophysical Behavior of Phthalocyanines When Grafted onto Silica Nanoparticles. Polyhedron 2013, 53, 278–285. DOI: 10.1016/j.poly.2013.01.037.
  • Valente, A.; Palma, C.; Fonseca, I. M.; Ramos, A. M.; Vital, J. Oxidation of Pinane over Phthalocyanine Complexes Supported on Activated Carbon: Effect of the Support Surface Treatment. Carbon 2003, 41, 2793–2803. DOI: 10.1016/S0008-6223(03)00393-2.
  • Liu, Y.; Fan, Y.-S.; Liu, Z.-M. Pyrolysis of Iron Phthalocyanine on Activated Carbon as Highly Efficient Non-Noble Metal Oxygen Reduction Catalyst in Microbial Fuel Cells. Chem. Eng. J. 2019, 361, 416–427. DOI: 10.1016/j.cej.2018.12.105.
  • Ju, L. J.; Li, Z. Y.; Xu, S.; Li, Q. Synthesis and Catalytic Activity of Different Substituted Metal Phthalocyanine-MWCNTs Hybrid Materials for Selective Oxidation of Styrene. Fullerenes Nanotubes Carbon Nanostruct. 2017, 25, 335–341. DOI: 10.1080/1536383X.2017.1292255.
  • Ballesteros, B.; Campidelli, S.; Torre, G. D. L.; Ehli, C.; Guldi, D. M.; Prato, M.; Torres, T. Synthesis, Characterization and Photophysical Properties of a SWNT-Phthalocyanine Hybrid. Chem. Commun. 2007, 28, 2950–2952. DOI: 10.1039/b702819a.
  • Morozan, A.; Campidelli, S.; Filoramo, A.; Jousselme, B.; Palacin, S. Catalytic Activity of Cobalt and Iron Phthalocyanines or Porphyrins Supported on Different Carbon Nanotubes towards Oxygen Reduction Reaction. Carbon 2011, 49, 4839–4847. DOI: 10.1016/j.carbon.2011.07.004.
  • Wang, Z. C.; Sun, Z.; Li, Q. P.; Zhou, M.; Liang, Q.; Li, Z. Y.; Su, D. Z. Selective Oxidation of Styrene to Benzaldehyde by Cobalt Phthalocyanine-Multi-Walled Carbon Nanotube Composites. Solid State Sci. 2020, 101, 106122. DOI: 10.1016/j.solidstatesciences.2020.106122.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.