96
Views
2
CrossRef citations to date
0
Altmetric
Articles

Carbon microfiber converted from the poly(butylene terephthalate)/lignin blending fiber

&
Pages 823-827 | Received 02 Apr 2020, Accepted 08 May 2020, Published online: 18 May 2020

References

  • Shenderova, O.; Zhirnov, V.; Brenner, D. Carbon Nanostructures. Critical Rev. Solid State Mater. Sci 2002, 27, 227–356. DOI: 10.1080/10408430208500497.
  • Choi, W.; Lahiri, I.; Seelaboyina, R.; Kang, Y. S. Synthesis of Graphene and Its Applications: A Review. Critical Rev. Solid State Mater. Sci 2010, 35, 52–71. DOI: 10.1080/10408430903505036.
  • Baughman, R. H.; Zakhidov, A. A.; De Heer, W. A. Carbon Nanotubes-the Route toward Applications. Science 2002, 297, 787–792. DOI: 10.1126/science.1060928.
  • Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. DOI: 10.1038/nmat1849.
  • Frackowiak, E.; Beguin, F. Electrochemical Storage of Energy in Carbon Nanotubes and Nanostructured Carbons. Carbon 2002, 40, 1775–1787. DOI: 10.1016/S0008-6223(02)00045-3.
  • Luo, Y.; Li, S.; Ren, Q.; Liu, J.; Xing, L.; Wang, Y.; Yu, Y.; Jia, Z.; Li, J. Facile Synthesis of Flowerlike Cu2O Nanoarchitectures by a Solution Phase Route. Crystal Growth Design 2007, 7, 87–92. DOI: 10.1021/cg060491k.
  • Kubacka, A.; Fernández-García, M.; Colón, G. Advanced Nanoarchitectures for Solar Photocatalytic Applications. Chem. Rev. 2012, 112, 1555–1614. DOI: 10.1021/cr100454n.
  • Zhu, H.; Luo, W.; Ciesielski, P. N.; Fang, Z.; Zhu, J. Y.; Henriksson, G.; Himmel, M. E.; Hu, L. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Chem. Rev. 2016, 116, 9305–9374. DOI: 10.1021/acs.chemrev.6b00225.
  • Lallave, M.; Bedia, J.; Ruiz-Rosas, R.; Rodríguez-Mirasol, J.; Cordero, T.; Otero, J. C.; Marquez, M.; Barrero, A.; Loscertales, I. G. Filled and Hollow Carbon Nanofibers by Coaxial Electrospinning of Alcell Lignin without Binder Polymers. Adv. Mater. 2007, 19, 4292–4296. DOI: 10.1002/adma.200700963.
  • Dumanlı, A. G.; Windle, A. H. Carbon Fibers from Cellulosic Precursors: A Review. J. Mater. Sci. 2012, 47, 4236–4250. DOI: 10.1007/s10853-011-6081-8.
  • Baker, D. A.; Rials, T. G. Recent Advances in Low-Cost Carbon Fiber Manufacture from Lignin. J. Appl. Polym. Sci. 2013, 130, 713–728. DOI: 10.1002/app.39273.
  • Qiao, W. M.; Huda, M.; Song, Y.; Yoon, S.-H.; Korai, Y.; Mochida, I.; Katou, O.; Hayashi, H.; Kawamoto, K. Carbon Fibers and Films Based on Biomass Resins. Energy Fuels 2005, 19, 2576–2582. DOI: 10.1021/ef050046j.
  • Puziy, A. M.; Poddubnaya, O. I.; Sevastyanova, O. Carbon Materials from Technical Lignins: Recent Advances. Top Curr Chem (Cham) 2018, 376, 33DOI: 10.1007/s41061-018-0210-7.
  • Lundahl, M. J.; Klar, V.; Wang, L.; Ago, M.; Rojas, O. J. Spinning of Cellulose Nanofibrils into Filaments: A Review. Ind. Eng. Chem. Res. 2017, 56, 8–19. DOI: 10.1021/acs.iecr.6b04010.
  • Brauns, G. E.; Brauns, D. A. The Chemistry of Lignin. New York, NY: Academic Press. 1960.
  • Cho, M.; Ko, F. K.; Renneckar, S. Impact of Thermal Oxidative Stabilization on the Performance of Lignin-Based Carbon Nanofiber Mats. ACS Omega. 2019, 4, 5345–5355. DOI: 10.1021/acsomega.9b00278.
  • Cho, M.; Karaaslan, M.; Chowdhury, S.; Ko, F.; Renneckar, S. Skipping Oxidative Thermal Stabilization for Lignin-Based Carbon Nanofibers. ACS Sustainable Chem. Eng. 2018, 6, 6434–6444. DOI: 10.1021/acssuschemeng.8b00209.
  • Kadla, J. F.; Kubo, S. R.; Venditti, A. R.; Gilbert, D. A.; Compere, L.; Griffith, W. Lignin-Based Carbon Fibers for Composite Fiber Applications. Carbon 2002, 40, 2913–2920. DOI: 10.1016/S0008-6223(02)00248-8.
  • Braun, J. L.; Holtman, K. M.; Kadla, J. F. Lignin-Based Carbon Fibers: oxidative Thermostabilization of Kraft Lignin. Carbon 2005, 43, 385–394. DOI: 10.1016/j.carbon.2004.09.027.
  • Kubo, S.; Kadla, J. F. Lignin-Based Carbon Fibers: effect of Synthetic Polymer Blending on Fiber Properties. J. Polym. Environ. 2005, 13, 97–105. DOI: 10.1007/s10924-005-2941-0.
  • Shen, Q.; Zhong, L. Lignin-Based Carbon Films and Controllable Pore Size and Properties. Mater. Sci. Eng. A 2007, 445–446, 731–735. DOI: 10.1016/j.msea.2006.09.066.
  • Shen, Q.; Zhang, T.; Zhang, W. X.; Chen, S.; Mezgebe, M. Lignin-Based Activated Carbon Fibers and Controllable Pore Size and Properties. J. Appl. Polym. Sci. 2011, 121, 989–994. DOI: 10.1002/app.33701.
  • Byrne, N.; De Silva, R.; Ma, Y.; Sixta, H.; Hummel, M. Enhanced Stabilization of Cellulose-Lignin Hybrid Filaments for Carbon Fiber Production. Cellulose 2018, 25, 723–733. DOI: 10.1007/s10570-017-1579-0.
  • Chatterjee, S.; Jones, E. B.; Clingenpeel, A. C.; McKenna, A. M.; Rios, O.; McNutt, N. W.; Keffer, D. J.; Johs, A. Conversion of Lignin Precursors to Carbon Fibers with Nanoscale Graphitic Domains. ACS Sustainable Chem. Eng. 2014, 2, 2002–2010. DOI: 10.1021/sc500189p.
  • Xia, K.; Ouyang, Q.; Chen, Y.; Wang, X.; Qian, X.; Wang, L. Preparation and Characterization of Lignosulfonate–Acrylonitrile Copolymer as a Novel Carbon Fiber Precursor. ACS Sustainable Chem. Eng. 2016, 4, 159–168. DOI: 10.1021/acssuschemeng.5b01442.
  • Lu, C.; Rawat, P.; Louder, N.; Ford, E. Properties and Structural Anisotropy of Gel-Spun Lignin/Poly(Vinyl Alcohol) Fibers Due to Gel Aging. ACS Sustainable Chem. Eng. 2018, 6, 679–689. DOI: 10.1021/acssuschemeng.7b03028.
  • Olsson, C.; Sjöholm, E.; Reimann, A. Carbon Fibers from Precursors Produced by Dry-Jet Wet-Spinning of Kraft Lignin Blended with Kraft Pulps. Holzforschung 2017, 71, 275–283. DOI: 10.1515/hf-2016-0189.
  • Vincent, S.; Prado, R.; Kuzmina, O.; Potter, K.; Bhardwaj, J.; Wanasekara, N. D.; Harniman, R. L.; Koutsomitopoulou, A.; Eichhorn, S. J.; Welton, T.; Rahatekar, S. S. Regenerated Cellulose and Willow Lignin Blends as Potential Renewable Precursors for Carbon Fibers. ACS Sustainable Chem. Eng. 2018, 6, 5903–5910. DOI: 10.1021/acssuschemeng.7b03200.
  • Bengtsson, A.; Bengtsson, J.; Olsson, C.; Sedin, M.; Jedvert, K.; Theliander, H.; Sjöholm, E. Improved Yield of Carbon Fibers from Cellulose and Kraft Lignin. Holzforschung 2018, 72, 1007–1016. DOI: 10.1515/hf-2018-0028.
  • Shen, Q.; Zhang, T.; Zhu, M. F. A Comparison of the Surface Properties of Lignin and Sulfonated Lignins by FTIR Spectroscopy and Wicking Technique. Coll. Surf. A 2008, 320, 57–60. DOI: 10.1016/j.colsurfa.2008.01.012.
  • Mousavioun, P.; Doherty, W. O. S.; George, G. Thermal Stability and Miscibility of Poly(Hydroxybutyrate) and Soda Lignin Blends. Ind. Crops Prod 2010, 32, 656–661. − DOI: 10.1016/j.indcrop.2010.08.001.
  • Pucciariello, R.; Bonini, C.; D'Auria, M.; Villani, V.; Giammarino, G.; Gorrasi, G. Polymer Blends of Steam-Explosion Lignin and Poly(ε-Caprolactone) by High-Energy Ball Milling. J. Appl. Polym. Sci. 2008, 109, 309–313. DOI: 10.1002/app.28097.
  • Kubo, S.; Kadla, J. F. Hydrogen Bonding in Lignin: A Fourier Transform Infrared Model Compound study. Biomacromolecules 2005, 6, 2815–2821. DOI: 10.1021/bm050288q.
  • Agend, F.; Naderi, N.; Alamdari, R. F. Fabrication and Electric Characterization of Electrospun PAN-Derived Carbon Nanofiber. J. Appl. Polym. Sci. 2007, 106, 255–259. DOI: 10.1002/app.26476.
  • Liu, H. C.; Chien, A. T.; Newcomb, B. A.; Liu, Y.; Kumar, S. Processing, Structure, and Properties of Lignin- and CNT Incorporated Polyacrylonitrile-Based Carbon Fibers. ACS Sustainable Chem. Eng. 2015, 3, 1943–1954. DOI: 10.1021/acssuschemeng.5b00562.
  • Deshmukh, G. S.; Peshwe, D. R.; Pathak, S. U.; Ekhe, J. D. Nonisothermal Crystallization Kinetics and Melting Behavior of Poly(Butylene Terephthalate) (PBT) Composites Based on Different Types of Functional Fillers. Thermochim. Acta 2014, 581, 41–53. DOI: 10.1016/j.tca.2014.02.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.