155
Views
11
CrossRef citations to date
0
Altmetric
Articles

Influence of substitutional doping on the electronic properties of carbon nanotubes with Stone Wales defects: density functional calculations

, , ORCID Icon, , &
Pages 828-840 | Received 22 Apr 2020, Accepted 10 May 2020, Published online: 18 May 2020

References

  • Ayala, P.; Arenal, R.; Rümmeli, M.; Rubio, A.; Pichler, T. The Doping of Carbon Nanotubes with Nitrogen and Their Potential Applications. Carbon 2010, 48, 575–586. DOI: 10.1016/j.carbon.2009.10.009.
  • Li, W.; Li, G.-Q.; Lu, X.-M.; Ma, J.-J.; Zeng, P.-Y.; He, Q.-Y.; Wang, Y.-Z. Strong Adsorption of Al-Doped Carbon Nanotubes toward Cisplatin. Chem. Phys. Lett. 2016, 658, 162–167. DOI: 10.1016/j.cplett.2016.06.040.
  • Shan, B.; Cho, K. Oxygen Dissociation on Nitrogen-Doped Single Wall Nanotube: A First-Principles Study. Chem. Phys. Lett. 2010, 492, 131–136. DOI: 10.1016/j.cplett.2010.04.050.
  • Terrones, M.; Ajayan, P. M.; Banhart, F.; Blase, X.; Carroll, D. L.; Charlier, J. C.; Czerw, R.; Foley, B.; Grobert, N.; Kamalakaran, R.; Kohler-Redlich.; et al. N-Doping and Coalescence of Carbon Nanotubes: Synthesis and Electronic Properties. Appl. Phys. A: Mater. Sci. Process. 2002, 74, 355–361. 10.1007/s003390201278.
  • Dehbandi, B.; Zardoost, M. R.; Mirjafary, Z.; Hossaini, Z. A Comprehensive DFT Study of the Molecular Structures of (6, 3) Chiral Carbon Nanotubes Doped with the Elements of Groups III and V. J. Mol. Struct. 2020, 1205, 127662. DOI: 10.1016/j.molstruc.2019.127662.
  • Duong, D. L.; Lee, I. H.; Kim, K. K.; Kong, J.; Lee, S. M.; Lee, Y. H. Carbon Nanotube Doping Mechanism in a Salt Solution and Hygroscopic Effect: Density Functional Theory. ACS Nano 2010, 4, 5430–5436. DOI: 10.1021/nn1011489.
  • Geier, M. L.; Moudgil, K.; Barlow, S.; Marder, S. R.; Hersam, M. C. Controlled n-Type Doping of Carbon Nanotube Transistors by an Organorhodium Dimer. Nano Lett. 2016, 16, 4329–4334. DOI: 10.1021/acs.nanolett.6b01393.
  • Katin, K. P.; Maslov, M. M. Stone-Wales Defects in Nitrogen-Doped C20 Fullerenes: Insight from ab Initio Calculations. Physica E 2018, 96, 6–10. DOI: 10.1016/j.physe.2017.09.021.
  • Azadi, S.; Moradian, R.; Shafaee, A. M. The Effect of Stone-Wales Defect Orientations on the Electronic Properties of Single-Walled Carbon Nanotubes. Comput. Mater. Sci. 2010, 49, 699–703. DOI: 10.1016/j.commatsci.2010.06.013.
  • Shen, K.; Curran, S.; Xu, H.; Jiang, Y.; Dewald, J.; Talla, J.; Pietra, T. 2005 Hydrogen Adsorption of Carbon Nanotubes under High Pressure: A Combined Magnetic Resonance and Raman Study. In ACS National Meeting Book of Abstracts, San Diego, CA, pp. FUEL-168.
  • Talla, J. A.; Zhang, D.; Curran, S. Electrical Transport Measurements of Highly Conductive Nitrogen Doped Multiwalled Carbon Nanotubes/Poly(Bisphenol a Carbonate) Composites. J. Mater. Res. 2011, 26, 2854–2859. DOI: 10.1557/jmr.2011.355.
  • Jamal, A. T. First Principles Modeling of Boron-Doped Carbon Nanotube Sensors. Physica B 2012, 407, 966–970.
  • Talla, J. A. Ab Initio Simulations of Doped Single-Walled Carbon Nanotube Sensors. Chem. Phys. 2012, 392, 71–77. DOI: 10.1016/j.chemphys.2011.10.014.
  • Zhou, Z.; Gao, X.; Yan, J.; Song, D. Doping Effects of B and N on Hydrogen Adsorption in Single-Walled Carbon Nanotubes through Density Functional Calculations. Carbon 2006, 44, 939–947. DOI: 10.1016/j.carbon.2005.10.016.
  • Wei, J.; Hu, H.; Zeng, H.; Wang, Z.; Wang, L.; Peng, P. Effects of Nitrogen in Stone-Wales Defect on the Electronic Transport of Carbon Nanotube. Appl. Phys. Lett. 2007, 91, 091063–092121. DOI: 10.1063/1.2778544.
  • Talla, J. A.; Ghozlan, A. A. Effect of Boron and Nitrogen co-Doping on CNT’s Electrical Properties: Density Functional Theory. Chin. J. Phys. 2018, 56, 740–746. DOI: 10.1016/j.cjph.2018.01.009.
  • Talla, J. A.; Alsalieby, A. F. Effect of Uniaxial Tensile Strength on the Electrical Properties of Doped Carbon Nanotubes: Density Functional Theory. Chin. J. Phys. 2019, 59, 418–425. DOI: 10.1016/j.cjph.2019.01.022.
  • Esrafili, M. D. Nitrogen-Doped (6,0) Carbon Nanotubes: A Comparative DFT Study Based on Surface Reactivity Descriptors. Comput. Theor. Chem. 2013, 1015, 1–7. DOI: 10.1016/j.comptc.2013.04.003.
  • Xiong, W.; Wang, Z.; He, S.; Hao, F.; Yang, Y.; Lv, Y.; Zhang, W.; Liu, P.; Luo, Ha. Nitrogen-Doped Carbon Nanotubes as a Highly Active Metal-Free Catalyst for Nitrobenzene Hydrogenation. Appl. Catal. B 2020, 260, 118105. DOI: 10.1016/j.apcatb.2019.118105.
  • Almahmoud, E.; Talla, J. A. Band Gap Tuning in Carbon Doped Boron Nitride Mono Sheet with Stone-Wales Defect: A Simulation Study. Mater. Res. Express 2019, 6, 105038. DOI: 10.1088/2053-1591/ab39a3.
  • Park, O. K.; Kim, H. J.; Hwang, J. Y.; Kim, S. M.; Jeong, Y.; Lee, J. K.; Ku, B. C. Effects of Nitrogen Doping from Pyrolyzed Ionic Liquid in Carbon Nanotube Fibers: Enhanced Mechanical and Electrical Properties. Nanotechnology 2015, 26, 075706 DOI: 10.1088/0957-4484/26/7/075706.
  • Esrafili, M. D.; Saeidi, N. A Catalyst-Free Achieving of N-Doped Carbon Nanotubes: The Healing of Single-Vacancy Defects by NO Molecule. Chem. Phys. Lett. 2018, 691, 172–177. DOI: 10.1016/j.cplett.2017.11.017.
  • Talla, J.; Zhang, D.; Kandadai, M.; Avadhanula, A.; Curran, S. A Resonance Raman Study of Carboxyl Induced Defects in Single-Walled Carbon Nanotubes. Physica B 2010, 405, 4570–4573. DOI: 10.1016/j.physb.2010.08.041.
  • Wei, J.; Hu, H.; Zeng, H.; Zhou, Z.; Yang, W.; Peng, P. Effects of Nitrogen Substitutional Doping on the Electronic Transport of Carbon Nanotube. Physica E 2008, 40, 462–466. DOI: 10.1016/j.physe.2007.06.060.
  • Kurban, M. Electronic Structure, Optical and Structural Properties of Si, Ni, B and N-Doped a Carbon Nanotube: DFT Study. Optik 2018, 172, 295–301. DOI: 10.1016/j.ijleo.2018.07.028.
  • Li, T.; Deng, H.; Liu, J.; Jin, C.; Song, Y.; Wang, F. First-Row Transition Metals and Nitrogen co-Doped Carbon Nanotubes: The Exact Origin of the Enhanced Activity for Oxygen Reduction Reaction. Carbon 2019, 143, 859–868. DOI: 10.1016/j.carbon.2018.12.007.
  • Talla, J. A. Pressure Induced Phase Transition and Band Gap Controlling in Defective Graphene Mono-Sheet: Density Functional Theory. Mater. Res. Express 2019, 6, 115010–115012. DOI: 10.1088/2053-1591/ab4408.
  • Nairat, M.; Talla, J. A. Electronic Properties of Aluminum Doped Carbon Nanotubes with Stone Wales Defects: Density Functional Theory. Phys. Solid State 2019, 61, 1896–1903. DOI: 10.1134/S1063783419100421.
  • Zhou, Z.; Gao, X.; Yan, J.; Song, D.; Morinaga, M. A First-Principles Study of Lithium Absorption in Boron- or Nitrogen-Doped Single-Walled Carbon Nanotubes. Carbon 2004, 42, 2677–2682. DOI: 10.1016/j.carbon.2004.06.019.
  • Droppa, R.; Ribeiro, C. T. M.; Zanatta, A. R.; dos Santos, M. C.; Alvarez, F. Comprehensive Spectroscopic Study of Nitrogenated Carbon Nanotubes. Phys. Rev. B 2004, 69, 045405. DOI: 10.1103/PhysRevB.69.045405.
  • Talla, J. A. Electronic Properties of Silicon Carbide Nanotube with Stone Wales Defects under Uniaxial Pressure: A Computational Study. Comput. Condens. Matter 2019, 19, e00378. DOI: 10.1016/j.cocom.2019.e00378.
  • Talla, J. A. Water Molecule Adsorption in Carbon Nanotubes with Haeckelite Structure: First Principles Study. Adv. Sci. Eng. Med. 2019, 11, 549–553. DOI: 10.1166/asem.2019.2382.
  • Talla, J. A.; Ghozlan, A. A. Effect of Haeckelite Structure on Optical Properties of Carbon Nanotubes Bundles: Density Functional Theory Study. J. Adv. Phys. 2018, 7, 33–42. DOI: 10.1166/jap.2018.1386.
  • Shportko, K.; Barlas, T.; Venger, E.; El-Nasser, H.; Ponomarenko, V. Influence of the Temperature on the Dispersion of the Surface Polaritons in Zn3P2 –Material for the Photovoltaic Applications. Curr. Appl. Phys. 2016, 16, 8–11. DOI: 10.1016/j.cap.2015.10.001.
  • Shportko, K. V.; Rueckamp, R.; Shoukavaya, T. V.; Trukhan, V. M.; El-Nasser, H. M.; Venger, E. F. Effect of the Low Temperatures on the Raman Active Vibrational Modes in ZnP2 and CdP2. Vib. Spectrosc. 2016, 87, 173–181. DOI: 10.1016/j.vibspec.2016.09.024.
  • Ori, O.; Cataldo, F.; Putz, M. V. Topological Anisotropy of Stone-Wales Waves in Graphenic fragments. Int. J. Mol. Sci. 2011, 12, 7934–7949. DOI: 10.3390/ijms12117934.
  • Samsonidze, G. G.; Samsonidze, G. G.; Yakobson, B. I. Energetics of Stone–Wales Defects in Deformations of Monoatomic Hexagonal Layers. Comput. Mater. Sci. 2002, 23, 62–72. https://doi.org/10.1016/S0927-0256.(01)00220-8. DOI: 10.1016/S0927-0256(01)00220-8.
  • Liu, H.; Zhang, Y.; Li, R.; Sun, X.; Désilets, S.; Abou-Rachid, H.; Jaidann, M.; Lussier, L.-S. Structural and Morphological Control of Aligned Nitrogen-Doped Carbon Nanotubes. Carbon 2010, 48, 1498–1507. DOI: 10.1016/j.carbon.2009.12.045.
  • Talla, J. A. Band Gap Opening of Doped Graphene Stone Wales Defects: Simulation Study. Semiconductors 2020, 54, 40–45. DOI: 10.1134/S1063782620010236.
  • Talla, J. A. Band Gap Tuning of Defective Silicon Carbide Nanotubes under External Electric Field: Density Functional Theory. Phys. Lett. A 2019, 383, 2076–2081. DOI: 10.1016/j.physleta.2019.03.040.
  • Serhan, M.; Abusini, M.; Almahmoud, E.; Omari, R.; Al-Khaza’leh, K.; Abu-Farsakh, H.; Ghozlan, A.; Talla, J. The Electronic Properties of Different Chiralities of Defected Boron Nitride Nanotubes: Theoretical Study. Comput. Condens. Matter 2020, 22, e00439. DOI: 10.1016/j.cocom.2019.e00439.
  • Talla, J. A. Electronic Properties of Doped Wurtzite ZnO: Density Functional Theory. Ukr. J. Phys. 2020, 65, 268. DOI: 10.15407/ujpe65.3.268.
  • Arif, B.; El-Nasser, H. M.; Dere, A.; Al-Ghamdi, A. A.; Bin-Omran, S.; El-Tantawy, F.; Yakuphanoglu, F. Optical Properties of Zn1 − x Al x O:NiO Transparent Metal Oxide Composite Thin Films Prepared by Sol–Gel Method. J. Sol-Gel Sci. Technol. 2015, 76, 378–385. DOI: 10.1007/s10971-015-3786-1.
  • Ahmad, A. A.; Alsaad, A. M.; Albiss, B. A.; Al-Akhras, M. A.; El-Nasser, H. M.; Qattan, I. A. Optical and Structural Properties of Sputter Deposited ZnO Thin Films in Relevance to Post-Annealing and Substrate Temperatures. Thin Solid Films 2016, 606, 133–142. DOI: 10.1016/j.tsf.2016.03.041.
  • Lv, Q.; Wang, Z.; Chen, S.; Li, C.; Sun, S.; Hu, S. Effects of Single Adatom and Stone-Wales Defects on the Elastic Properties of Carbon Nanotube/Polypropylene Composites: A Molecular Simulation Study. Int. J. Mech. Sci. 2017, 131-132, 527–534. DOI: 10.1016/j.ijmecsci.2017.08.001.
  • Ghozlan, A. A.; Talla, J. A. Optical Properties of Defective Silicon Carbide Nanotubes: Theoretical Study. Rev. Cubana Fis. 2019, 36, 27–36.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.