201
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Investigation of the usability of nitric acid electrolyte in graphene production by electrochemical method

Pages 175-182 | Received 07 Sep 2020, Accepted 15 Sep 2020, Published online: 24 Sep 2020

References

  • Geim, A. K.; Novoselov, K. S. The Rise of Graphene. In Nanoscience and Technology, 2010; pp 11–19.DOI: 10.1142/9789814287005_0002.
  • Yusuf, M.; Kumar, M.; Khan, M. A.; Sillanpa, M.; Arafat, H. A Review on Exfoliation, Characterization, Environmental and Energy Applications of Graphene and Graphene-Based Composites. Adv. Colloid Interface Sci. 2019, 273, 102036. DOI: 10.1016/j.cis.2019.102036.
  • Ghany, N. A. A.; Elsherif, S. A.; Handal, H. T. Revolution of Graphene for Different Applications: State-of-the-Art. Surf. Interfaces 2017, 9, 93–106. DOI: 10.1016/j.surfin.2017.08.004.
  • Ni, Z.; Wang, Y.; Yu, T.; Shen, Z. Raman Spectroscopy and Imaging of Graphene. Nano Res. 2008, 1, 273–291. DOI: 10.1007/s12274-008-8036-1.
  • Zhang, Y.; Tan, Y.-W.; Stormer, H. L.; Kim, P. Experimental Observation of the Quantum Hall Effect and Berry's Phase in Graphene. Nature 2005, 438, 201–204. DOI: 10.1038/nature04235.
  • Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The Structure of Suspended Graphene Sheets. Nature 2007, 446, 60–63. DOI: 10.1038/nature05545.
  • Chen, J.-H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S. Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2. Nat. Nanotechnol. 2008, 3, 206–209. DOI: 10.1038/nnano.2008.58.
  • Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. I.; Seal, S. Graphene Based Materials: Past, Present and Future. Prog. Mater. Sci. 2011, 56, 1178–1271. DOI: 10.1016/j.pmatsci.2011.03.003.
  • Liao, L.; Lin, Y.-C.; Bao, M.; Cheng, R.; Bai, J.; Liu, Y.; Qu, Y.; Wang, K. L.; Huang, Y.; Duan, X. High-Speed Graphene Transistors with a Self-Aligned Nanowire Gate. Nature 2010, 467, 305–308. DOI: 10.1038/nature09405.
  • Bhoria, R. S. Graphene: Potential Material for Nanoelectronics Applications. Indian J. Pure Appl. Phys. 2015, 53, 501–513.
  • Novoselov, K. S.; Fal, V.; Colombo, L.; Gellert, P.; Schwab, M.; Kim, K. A Roadmap for Graphene. Nature 2012, 490, 192–200. DOI: 10.1038/nature11458.
  • Han, T.-H.; Lee, Y.; Choi, M.-R.; Woo, S.-H.; Bae, S.-H.; Hong, B. H.; Ahn, J.-H.; Lee, T.-W. Extremely Efficient Flexible Organic Light-Emitting Diodes with Modified Graphene Anode. Nature Photon. 2012, 6, 105–110. DOI: 10.1038/nphoton.2011.318.
  • Xia, F.; Mueller, T.; Lin, Y-m.; Valdes-Garcia, A.; Avouris, P. Ultrafast Graphene Photodetector. Nat. Nanotechnol. 2009, 4, 839–843. DOI: 10.1038/nnano.2009.292.
  • Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A Graphene-Based Broadband Optical Modulator. Nature 2011, 474, 64–67. DOI: 10.1038/nature10067.
  • Sensale-Rodriguez, B.; Fang, T.; Yan, R.; Kelly, M. M.; Jena, D.; Liu, L.; Xing, H. Unique Prospects for Graphene-Based Terahertz Modulators. Appl. Phys. Lett. 2011, 99, 113104. DOI: 10.1063/1.3636435.
  • Lu, G.; Ocola, L. E.; Chen, J. Reduced Graphene Oxide for Room-Temperature Gas Sensors. Nanotechnology 2009, 20, 445502. DOI: 10.1088/0957-4484/20/44/445502.
  • Zhou, M.; Zhai, Y.; Dong, S. Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene oxide. Anal. Chem. 2009, 81, 5603–5613. DOI: 10.1021/ac900136z.
  • Frackowiak, E. Carbon Materials for Supercapacitor Application. Phys. Chem. Chem. Phys. 2007, 9, 1774–1785. DOI: 10.1039/b618139m.
  • Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M.; Chen, Y. Supercapacitor Devices Based on Graphene Materials. J. Phys. Chem. C. 2009, 113, 13103–13107. DOI: 10.1021/jp902214f.
  • Dong, Q.; Zhao, Y.; Han, X.; Wang, Y.; Liu, M.; Li, Y. Pd/Cu Bimetallic Nanoparticles Supported on Graphene Nanosheets: Facile Synthesis and Application as Novel Electrocatalyst for Ethanol Oxidation in Alkaline Media. Int. J. Hydrogen Energy 2014, 39, 14669–14679. DOI: 10.1016/j.ijhydene.2014.06.139.
  • Bhuyan, M. S. A.; Uddin, M. N.; Islam, M. M.; Bipasha, F. A.; Hossain, S. S. Synthesis of Graphene. Int. Nano Lett.2016, 6, 65–83. DOI: 10.1007/s40089-015-0176-1.
  • Phiri, J.; Gane, P.; Maloney, T. C. General Overview of Graphene: Production, Properties and Application in Polymer Composites. Mater. Sci. Eng.: B 2017, 215, 9–28. DOI: 10.1016/j.mseb.2016.10.004.
  • Akbar, F.; Kolahdouz, M.; Larimian, S.; Radfar, B.; Radamson, H. Graphene Synthesis, Characterization and Its Applications in Nanophotonics, Nanoelectronics, and Nanosensing. J. Mater. Sci: MaterElectron. 2015, 26, 4347–4379. DOI: 10.1007/s10854-015-2725-9.
  • Wang, Y.; Zheng, Y.; Xu, X.; Dubuisson, E.; Bao, Q.; Lu, J.; Loh, K. P. Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst. ACS Nano. 2011, 5, 9927–9933. DOI: 10.1021/nn203700w.
  • Virojanadara, C.; Syväjarvi, M.; Yakimova, R.; Johansson, L.; Zakharov, A.; Balasubramanian, T. Homogeneous Large-Area Graphene Layer Growth on 6 H-SiC (0001). Phys. Rev. B 2008, 78, 245403. DOI: 10.1103/PhysRevB.78.245403.
  • Saiful Badri, M. A.; Salleh, M. M.; Md Noor, N. F.; Rahman, M. Y. A.; Umar, A. A. Green Synthesis of Few-Layered Graphene from Aqueous Processed Graphite Exfoliation for Graphene Thin Film Preparation. Mater. Chem. Phys. 2017, 193, 212–219. DOI: 10.1016/j.matchemphys.2017.02.029.
  • Petrovski, A.; Dimitrov, A. T.; Grozdanov, A.; Paunović, P.; Andonović, B.; Gentile, G.; Avella, M.; Ranguelov, B. Study of Graphene Obtained by Electrolysis in Sulfuric Acid Electrolytes. SciFed Nanotech Res. Lett. 2017, 1, 2.
  • Shams, S. S.; Zhang, R.; Zhu, J. Graphene Synthesis: A Review. Materials Science-Poland 2015, 33, 566–578. DOI: 10.1515/msp-2015-0079.
  • Yang, C.-Y.; Wu, C.-L.; Lin, Y.-H.; Tsai, L.-H.; Chi, Y.-C.; Chang, J.-H.; Wu, C.-I.; Tsai, H.-K.; Tsai, D.-P.; Lin, G.-R. Fabricating Graphite Nano-Sheet Powder by Slow Electrochemical Exfoliation of Large-Scale Graphite Foil as a Mode-Locker for Fiber Lasers. Optical Materials Express 2013, 3, 1893–1905.
  • Segal, M. Selling Graphene by the Ton. Nat. Nanotechnol. 2009, 4, 612–614. DOI: 10.1038/nnano.2009.279.
  • Coroş, M.; Pogăcean, F.; Roşu, M.-C.; Socaci, C.; Borodi, G.; Mageruşan, L.; Biriş, A. R.; Pruneanu, S. Simple and Cost-Effective Synthesis of Graphene by Electrochemical Exfoliation of Graphite Rods. RSC Adv. 2016, 6, 2651–2661. DOI: 10.1039/C5RA19277C.
  • Sahoo, S. K.; Mallik, A. Simple, Fast and Cost-Effective Electrochemical Synthesis of Few Layer Graphene Nanosheets. Nano. 2015, 10, 1550019. DOI: 10.1142/S1793292015500198.
  • Chen, K.; Xue, D. Preparation of Colloidal Graphene in Quantity by Electrochemical Exfoliation. J. Colloid Interface Sci. 2014, 436, 41–46. DOI: 10.1016/j.jcis.2014.08.057.
  • Parvez, K.; Wu, Z.-S.; Li, R.; Liu, X.; Graf, R.; Feng, X.; Müllen, K. Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts. J. Am. Chem. Soc. 2014, 136, 6083–6091. DOI: 10.1021/ja5017156.
  • Jibrael, R. I.; Mohammed, M. K. Production of Graphene Powder by Electrochemical Exfoliation of Graphite Electrodes Immersed in Aqueous Solution. Optik 2016, 127, 6384–6389. DOI: 10.1016/j.ijleo.2016.04.101.
  • Sheshmani, S.; Fashapoyeh, M. A. Suitable Chemical Methods for Preparation of Graphene Oxide, Graphene and Surface Functionalized Graphene Nanosheets. Acta Chim. Slovenica 2014, 60, 813–825.
  • Huang, X.; Li, S.; Qi, Z.; Zhang, W.; Ye, W.; Fang, Y. Low Defect Concentration Few-Layer Graphene Using a Two-Step Electrochemical Exfoliation. Nanotechnology 2015, 26, 105602DOI: 10.1088/0957-4484/26/10/105602.
  • Su, C.-Y.; Lu, A.-Y.; Xu, Y.; Chen, F.-R.; Khlobystov, A. N.; Li, L.-J. High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. ACS Nano 2011, 5, 2332–2339. DOI: 10.1021/nn200025p.
  • Liu, N.; Luo, F.; Wu, H.; Liu, Y.; Zhang, C.; Chen, J. One‐Step Ionic‐Liquid‐Assisted Electrochemical Synthesis of Ionic‐Liquid‐Functionalized Graphene Sheets Directly from Graphite. Adv. Funct. Mater. 2008, 18, 1518–1525. DOI: 10.1002/adfm.200700797.
  • Alanyalıoğlu, M.; Segura, J. J.; Oró-Solè, J.; Casañ-Pastor, N. The Synthesis of Graphene Sheets with Controlled Thickness and Order Using Surfactant-Assisted Electrochemical Processes. Carbon 2012, 50, 142–152. DOI: 10.1016/j.carbon.2011.07.064.
  • Hamra, A.; Lim, H.; Chee, W.; Huang, N. Electro-Exfoliating Graphene from Graphite for Direct Fabrication of Supercapacitor. Appl. Surf. Sci. 2016, 360, 213–223. DOI: 10.1016/j.apsusc.2015.11.006.
  • Whittig, L.; Allardice, W. X‐Ray Diffraction Techniques. Methods Soil Anal.: Part 1 Phys. Mineral. Methods 1986, 5, 331–362.
  • del Río, F.; Boado, M. G.; Rama, A.; Guitián, F. A Comparative Study on Different Aqueous-Phase Graphite Exfoliation Methods for Few-Layer Graphene Production and Its Application in Alumina Matrix Composites. J. Eur. Ceram. Soc. 2017, 37, 3681–3693. DOI: 10.1016/j.jeurceramsoc.2017.04.029.
  • Hossain, S. T.; Wang, R. Electrochemical Exfoliation of Graphite: Effect of Temperature and Hydrogen Peroxide Addition. Electrochim. Acta 2016, 216, 253–260. DOI: 10.1016/j.electacta.2016.09.022.
  • Wang, W.; Wang, Y.; Gao, Y.; Zhao, Y. Control of Number of Graphene Layers Using Ultrasound in Supercritical CO2 and Their Application in Lithium-Ion Batteries. J. Supercrit. Fluids 2014, 85, 95–101. DOI: 10.1016/j.supflu.2013.11.005.
  • Chang, K.; Li, M.; Wang, T.; Ouyang, S.; Li, P.; Liu, L.; Ye, J. Drastic Layer‐Number‐Dependent Activity Enhancement in Photocatalytic H2 Evolution over nMoS2/CdS (n≥ 1) under Visible Light. Adv. Energy Mater. 2015, 5, 1402279. DOI: 10.1002/aenm.201402279.
  • Wang, Y.; Zhang, X.; Liu, H.; Zhang, X. SMA-Assisted Exfoliation of Graphite by Microfluidization for Efficient and Large-Scale Production of High-Quality Graphene. Nanomaterials 2019, 9, 1653. DOI: 10.3390/nano9121653.
  • Huh, S. H. X-Ray Diffraction of Multi-Layer Graphenes: Instant Measurement and Determination of the Number of Layers. Carbon 2014, 78, 617–621. DOI: 10.1016/j.carbon.2014.07.034.
  • Chen, K.; Xue, D. From Graphite-Clay Composites to Graphene Electrode Materials: In-Situ Electrochemical Oxidation and Functionalization. Mater. Res. Bull. 2017, 96, 281–285. DOI: 10.1016/j.materresbull.2017.01.025.
  • Chen, K.; Xue, D.; Komarneni, S. Nanoclay Assisted Electrochemical Exfoliation of Pencil Core to High Conductive Graphene thin-film electrode. J. Colloid Interface Sci. 2017, 487, 156–161. DOI: 10.1016/j.jcis.2016.10.028.
  • Sharma, A.; Verma, G.; Toor AP. Production of Surfactant Assisted Graphene by Liquid Phase Exfoliation via Probe Tip Sonication. J. Basic Appl. Eng. Res. 2015, 2, 266–269.
  • Ma, F.; Liu, L.; Wang, X.; Jing, M.; Tan, W.; Hao, X. Rapid Production of Few Layer Graphene for Energy Storage via Dry Exfoliation of Expansible Graphite. Compos. Sci. Technol. 2020, 185, 107895. DOI: 10.1016/j.compscitech.2019.107895.
  • Navik, R.; Gai, Y.; Wang, W.; Zhao, Y. Curcumin-Assisted Ultrasound Exfoliation of Graphite to Graphene in Ethanol. Ultrason. Sonochem. 2018, 48, 96–102. DOI: 10.1016/j.ultsonch.2018.05.010.
  • Devasenathipathy, R.; Mani, V.; Chen, S.-M. Highly Selective Amperometric Sensor for the Trace Level Detection of Hydrazine at Bismuth Nanoparticles Decorated Graphene Nanosheets Modified Electrode. Talanta 2014, 124, 43–51. DOI: 10.1016/j.talanta.2014.02.031.
  • Neelgund, G. M.; Oki, A.; Luo, Z. In-situ deposition of hydroxyapatite on graphene nanosheets. Mater. Res. Bull. 2013, 48, 175–179. DOI: 10.1016/j.materresbull.2012.08.077.
  • Grodecki, K.; Jozwik, I.; Baranowski, J.; Teklinska, D.; Strupinski, W. SEM and Raman Analysis of Graphene on SiC(0001)). Micron 2016, 80, 20–23. DOI: 10.1016/j.micron.2015.05.013.
  • Awasthi, S.; Gopinathan, P.; Rajanikanth, A.; Bansal, C. Current–Voltage Characteristics of Electrochemically Synthesized Multi-Layer Graphene with Polyaniline. J. Sci: AdvMater. Devices 2018, 3, 37–43. DOI: 10.1016/j.jsamd.2018.01.003.
  • Zhao, W.; Tan, P. H.; Liu, J.; Ferrari, A. C. Intercalation of Few-Layer Graphite Flakes with FeCl3: Raman Determination of Fermi Level, Layer by Layer Decoupling, and Stability. J. Am. Chem. Soc. 2011, 133, 5941–5946. DOI: 10.1021/ja110939a.
  • Kaniyoor, A.; Baby, T. T.; Arockiadoss, T.; Rajalakshmi, N.; Ramaprabhu, S. Wrinkled Graphenes: A Study on the Effects of Synthesis Parameters on Exfoliation-Reduction of Graphite Oxide. J. Phys. Chem. C 2011, 115, 17660–17669. DOI: 10.1021/jp204039k.
  • Ferrari, A. C.; Basko, D. M. Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene. Nat. Nanotechnol. 2013, 8, 235–246. DOI: 10.1038/nnano.2013.46.
  • Malard, L.; Pimenta, M.; Dresselhaus, G.; Dresselhaus, M. Raman Spectroscopy in Graphene. Phys. Rep. 2009, 473, 51–87. DOI: 10.1016/j.physrep.2009.02.003.
  • Lv, Y.; Yu, L.; Jiang, C.; Chen, S.; Nie, Z. Synthesis of Graphene Nanosheet Powder with Layer Number Control via a Soluble Salt-Assisted Route. RSC Adv. 2014, 4, 13350–13354. DOI: 10.1039/c3ra45060k.
  • Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401. DOI: 10.1103/PhysRevLett.97.187401.
  • Wu, J.-B.; Lin, M.-L.; Cong, X.; Liu, H.-N.; Tan, P.-H. Raman Spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873. DOI: 10.1039/c6cs00915h.
  • Ferrari, A. C. Raman Spectroscopy of Graphene and Graphite: Disorder, Electron–Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Commun. 2007, 143, 47–57. DOI: 10.1016/j.ssc.2007.03.052.
  • Ramya, A.; Mohan, A. N.; Manoj, B. Wrinkled Graphene: Synthesis and Characterization of Few Layer Graphene-like Nanocarbons from Kerosene. Mater. Sci. -Poland 2016, 34, 330–336. DOI: 10.1515/msp-2016-0061.
  • Ma, B.; Rodriguez, R. D.; Ruban, A.; Pavlov, S.; Sheremet, E. The Correlation between Electrical Conductivity and Second-Order Raman Modes of Laser-Reduced Graphene Oxide. Phys. Chem. Chem. Phys. 2019, 21, 10125–10134. DOI: 10.1039/c9cp00093c.
  • Manoj, B. Synthesis and Characterization of Porous, Mixed Phase, Wrinkled, Few Layer Graphene like Nanocarbon from Charcoal. Russ. J. Phys. Chem. 2015, 89, 2438–2442. DOI: 10.1134/S0036024415130257.
  • Park, S.; Ruoff, R. S. Chemical Methods for the Production of Graphenes. Nat. Nanotechnol. 2009, 4, 217–224. DOI: 10.1038/nnano.2009.58.
  • Huang, N. M.; Lim, H.; Chia, C. H.; Yarmo, M. A.; Muhamad, M. Simple Room-Temperature Preparation of High-Yield Large-Area Graphene Oxide. Int. J. Nanomed. 2011, 6, 3443–3448. DOI: 10.2147/IJN.S26812.
  • Hao, Y.; Wang, Y.; Wang, L.; Ni, Z.; Wang, Z.; Wang, R.; Koo, C. K.; Shen, Z.; Thong, J. T. Probing Layer Number and Stacking Order of few-layer graphene by Raman spectroscopy . Small 2010, 6, 195–200. DOI: 10.1002/smll.200901173.
  • Gupta, A.; Chen, G.; Joshi, P.; Tadigadapa, S.; Eklund, P. Raman Scattering from High-Frequency Phonons in Supported n-Graphene Layer Films. Nano Lett. 2006, 6, 2667–2673. DOI: 10.1021/nl061420a.
  • Wang, H.; Wang, Y.; Cao, X.; Feng, M.; Lan, G. Vibrational Properties of Graphene and Graphene Layers. J. Raman Spectrosc. 2009, 40, 1791–1796. DOI: 10.1002/jrs.2321.
  • Ferreira, E. M.; Moutinho, M. V.; Stavale, F.; Lucchese, M. M.; Capaz, R. B.; Achete, C. A.; Jorio, A. Evolution of the Raman Spectra from Single-, Few-, and Many-Layer Graphene with Increasing Disorder. Phys. Rev. B 2010, 82, 125429. DOI: 10.1103/PhysRevB.82.125429.
  • Lucchese, M. M.; Stavale, F.; Ferreira, E. M.; Vilani, C.; Moutinho, M. V. D. O.; Capaz, R. B.; Achete, C. A.; Jorio, A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 2010, 48 (5):1592–1597. DOI: 10.1016/j.carbon.2009.12.057.
  • May, P.; Lazzeri, M.; Venezuela, P.; Herziger, F.; Callsen, G.; Reparaz, J. S.; Hoffmann, A.; Mauri, F.; Maultzsch, J. Signature of the Two-Dimensional Phonon Dispersion in Graphene Probed by Double-Resonant Raman Scattering. Phys. Rev. B 2013, 87, 075402. DOI: 10.1103/PhysRevB.87.075402.
  • Krishnamoorthy, K.; Veerapandian, M.; Yun, K.; Kim, S.-J. The Chemical and Structural Analysis of Graphene Oxide with Different Degrees of Oxidation. Carbon 2013, 53, 38–49. DOI: 10.1016/j.carbon.2012.10.013.
  • Ramalingam, P.; Pusuluri, S. T.; Periasamy, S.; Veerabahu, R.; Kulandaivel, J. Role of Deoxy Group on the High Concentration of Graphene in Surfactant/Water Media. RSC Adv. 2013, 3, 2369–2378. DOI: 10.1039/c2ra22343k.
  • Gayathri, S.; Jayabal, P.; Kottaisamy, M.; Ramakrishnan, V. Synthesis of Few Layer Graphene by Direct Exfoliation of Graphite and a Raman Spectroscopic Study. Aip Adv. 2014, 4, 027116. DOI: 10.1063/1.4866595.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.