254
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Fabrication of vertically aligned N-doped carbon nanotube arrays on vermiculite by horizonal chemical vapor deposition

, , , , , , ORCID Icon & ORCID Icon show all
Pages 202-211 | Received 18 Sep 2020, Accepted 23 Sep 2020, Published online: 07 Oct 2020

References

  • Yang, Y.; Huang, S.; He, H.; Mau, A. W.; Dai, L. Patterned Growth of Well-Aligned Carbon Nanotubes: A Photolithographic Approach. J. Am. Chem. Soc. 1999, 121, 10832–10833. DOI: 10.1021/ja992945q.
  • Fan, S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties. Science 1999, 283, 512–514. DOI: 10.1126/science.283.5401.512.
  • Veedu, V. P.; Cao, A.; Li, X.; Ma, K.; Soldano, C.; Kar, S.; Ajayan, P. M.; Ghasemi-Nejhad, M. N. Multifunctional Composites Using Reinforced Laminae with Carbon-Nanotube Forests. Nat. Mater. 2006, 5, 457–462. DOI: 10.1038/nmat1650.
  • Li, X.; Zhu, G.; Dordick, J. S.; Ajayan, P. M. Compression-Modulated Tunable-Pore Carbon-Nanotube Membrane Filters. Small 2007, 3, 595–599. DOI: 10.1002/smll.200600652.
  • Srivastava, A.; Srivastava, O. N.; Talapatra, S.; Vajtai, R.; Ajayan, P. M. Carbon Nanotube Filters. Nat. Mater. 2004, 3, 610–614. DOI: 10.1038/nmat1192.
  • Cao, A.; Dickrell, P. L.; Sawyer, W. G.; Ghasemi-Nejhad, M. N.; Ajayan, P. M. Super-Compressible Foamlike Carbon Nanotube Films. Science 2005, 310, 1307–1310. DOI: 10.1126/science.1118957.
  • Cao, A.; Veedu, V. P.; Li, X.; Yao, Z.; Ghasemi-Nejhad, M. N.; Ajayan, P. M. Multifunctional Brushes Made from Carbon Nanotubes. Nat. Mater. 2005, 4, 540–545. DOI: 10.1038/nmat1415.
  • Rybczynski, J.; Kempa, K.; Herczynski, A.; Wang, Y.; Naughton, M. J.; Ren, Z. F.; Huang, Z. P.; Cai, D.; Giersig, M. Subwavelength Waveguide for Visible Light. Appl. Phys. Lett. 2007, 90, 021104. DOI: 10.1063/1.2430400..
  • Zeng, B.; Xiong, G.; Chen, S.; Wang, W. Z.; Wang, D. Z.; Ren, Z. F. Enhancement of Field Emission of Aligned Carbon Nanotubes by Thermal Oxidation. Appl. Phys. Lett. 2006, 89, 223119. DOI: 10.1063/1.2399342.
  • Saito, Y.; Uemura, S. Field Emission from Carbon Nanotubes and Its Application to Electron Sources. Carbon 2000, 38, 169–182. DOI: 10.1016/S0008-6223(99)00139-6.
  • Lee, B. J.; Jeong, G. H. Efficient Surface Functionalization of Vertically-Aligned Carbon Nanotube Arrays Using an Atmospheric Pressure Plasma Jet System. Fuller. Nanotubes Carbon Nanostruct. 2018, 26, 116–122. DOI: 10.1080/1536383X.2017.1409211.
  • Yu, J.; Flavel, B. S.; Shapter, J. G. Optical and Electrochemical Properties of Single-Walled Carbon Nanotube Arrays Attached to Silicon (100) Surfaces. Fuller. Nanotubes Carbon Nanostruct. 2008, 16, 18–29. DOI: 10.1080/15363830701779299.
  • Lee, Y. T.; Kim, N. S.; Bae, S. Y.; Park, J.; Yu, S. C.; Ryu, H.; Lee, H. J. Growth of Vertically Aligned Nitrogen-Doped Carbon Nanotubes: Control of the Nitrogen Content over the Temperature Range 900-1100 °C. J. Phys. Chem. B 2003, 107, 12958–12963. DOI: 10.1016/S0008-6223(99)00139-6.
  • Terrones, M.; Grobert, N.; Olivares, J.; Zhang, J. P.; Terrones, H.; Kordatos, K.; Hsu, W. K.; Hare, J. P.; Townsend, P. D.; Prassides, K.; et al. Controlled Production of Aligned-Nanotube Bundles. Nature 1997, 388, 52–55. DOI: 10.1038/40369.
  • Wang, X.; Liu, Y.; Zhu, D.; Zhang, L.; Ma, H.; Yao, N.; Zhang, B. Controllable Growth, Structure, and Low Field Emission of Well-Aligned CNx Nanotubes. J. Phys. Chem. B 2002, 106, 2186–2190. DOI: 10.1021/jp013007r.
  • Okotrub, A. V.; Kanygin, M. A.; Bulusheva, L. G.; Vyalikh, D. V. X-Ray Absorption Spectra of N2 Molecules Embedded into CNx Nanotubes as a Marker of Orientation Ordering of Array. Fuller. Nanotubes Carbon Nanostruct. 2010, 18, 551–557. DOI: 10.1080/1536383X.2010.488076.
  • Huang, J. Q.; Zhao, M. Q.; Zhang, Q.; Nie, J. Q.; Yao, L. D.; Su, D. S.; Wei, F. Efficient Synthesis of Aligned Nitrogen-Doped Carbon Nanotubes in a Fluidized-Bed Reactor. Catal. Today 2012, 186, 83–92. DOI: 10.1016/j.cattod.2011.10.021.
  • Terrones, M.; Redlich, P.; Grobert, N.; Trasobares, S.; Hsu, W. K.; Terrones, H.; Rühle, M. Carbon Nitride Nanocomposites: Formation of Aligned CxNy Nanofibers. Adv. Mater. 1999, 11, 655–658. DOI: 10.1002/(sici)1521-4095(199906)11:8 < 655::aid-adma655 > 3.0.co;2-6.
  • Terrones, M.; Terrones, H.; Grobert, N.; Hsu, W. K.; Zhu, Y. Q.; Hare, J. P.; Kroto, H. W.; Walton, D. R. M.; Kohler-Redlich, P.; Rühle, M.; et al. Efficient Route to Large Arrays of CNx Nanofibers by Pyrolysis of Ferrocene/Melamine Mixtures. Appl. Phys. Lett. 1999, 75, 3932–3934. DOI: 10.1016/j.cattod.2011.10.021.
  • Wu, F.; Wang, C.; Hu, H.-Y.; Pan, M.; Li, H.-F.; Xie, N.; Zeng, Z.; Deng, S.; Dai, G.-P. Controllable Synthesis of N-Doped Aligned Carbon Nanotubes from Melamine-Based Carbon by Water-Assisted Chemical Vapor Deposition. Fuller. Nanotubes Carbon Nanostruct. 2019, 27, 729–735. DOI: 10.1080/1536383X.2019.1633627.
  • Li, H.-F.; Wu, F.; Wang, C.; Zhang, P.-X.; Hu, H.-Y.; Xie, N.; Pan, M.; Zeng, Z.; Deng, S.; Wu, M.; et al. One-Step Chemical Vapor Deposition Synthesis of 3d n-Doped Carbon Nanotube/n-Doped Graphene Hybrid Material on Nickel Foam. Nanomaterials 2018, 8, 700. DOI: 10.3390/nano8090700.
  • Yan, X.-L.; Li, H.-F.; Wang, C.; Jiang, B.-B.; Hu, H.-Y.; Xie, N.; Wu, M. H.; Vinodgopal, K.; Dai, G.-P. Melamine as a Single Source for Fabrication of Mesoscopic 3D Composites of N-Doped Carbon Nanotubes on Graphene. RSC Adv. 2018, 8, 12157–12164. DOI: 10.1039/C8RA01577E.
  • De Zhang, W.; Wen, Y.; Liu, S. M.; Tjiu, W. C.; Xu, G. Q.; Gan, L. M. Synthesis of Vertically Aligned Carbon Nanotubes on Metal Deposited Quartz Plates. Carbon 2002, 40, 1981–1989. DOI: 10.1016/S0008-6223(02)00052-0.
  • Pint, C. L.; Pheasant, S. T.; Pasquali, M.; Coulter, K. E.; Schmidt, H. K.; Hauge, R. H. Synthesis of High Aspect-Ratio Carbon Nanotube "Flying Carpets" from Nanostructured Flake Substrates. Nano Lett. 2008, 8, 1879–1883. DOI: 10.1021/nl0804295.
  • Xiang, R.; Luo, G. H.; Qian, W. Z.; Wang, Y.; Wei, F.; Li, Q. Large Area Growth of Aligned CNT Arrays on Spheres: Towards Large Scale and Continuous Production. Chem. Vap. Deposition 2007, 13, 533–536. DOI: 10.1002/cvde.200704249.
  • Xiang, R.; Luo, G.; Yang, Z.; Zhang, Q.; Qian, W.; Wei, F. Large Area Growth of Aligned CNT Arrays on Spheres: Cost Performance and Product Control. Mater. Lett. 2009, 63, 84–87. DOI: 10.1016/j.matlet.2008.09.015.
  • Zhang, Q.; Huang, J. Q.; Zhao, M. Q.; Qian, W. Z.; Wang, Y.; Wei, F. Radial Growth of Vertically Aligned Carbon Nanotube Arrays from Ethylene on Ceramic Spheres. Carbon 2008, 46, 1152–1158. [Database] DOI: 10.1002/cvde.200704249.
  • Philippe, R.; Caussat, B.; Falqui, A.; Kihn, Y.; Kalck, P.; Bordère, S.; Plee, D.; Gaillard, P.; Bernard, D.; Serp, P. An Original Growth Mode of MWCNTs on Alumina Supported Iron Catalysts. J. Catal. 2009, 263, 345–358. DOI: 10.1016/j.jcat.2009.02.027.
  • Briggs, N. M.; Crossley, S. P. Rapid Growth of Vertically Aligned Multi-Walled Carbon Nanotubes on a Lamellar Support. RSC Adv. 2015, 5, 83945–83952. DOI: 10.1039/C5RA12611H.
  • Zhang, Q.; Zhao, M. Q.; Huang, J. Q.; Liu, Y.; Wang, Y.; Qian, W. Z.; Wei, F. Vertically Aligned Carbon Nanotube Arrays Grown on a Lamellar Catalyst by Fluidized Bed Catalytic Chemical Vapor Deposition. Carbon 2009, 47, 2600–2610. DOI: 10.1016/j.carbon.2009.05.012.
  • Zhang, Q.; Zhao, M. Q.; Huang, J. Q.; Wei, F. Comparison of Vertically Aligned Carbon Nanotube Array Intercalated Production among Vermiculites in Fixed and Fluidized Bed Reactors. Powder Technol. 2010, 198, 285–291. DOI: 10.1016/j.powtec.2009.11.023.
  • Zhang, Q.; Zhao, M.; Liu, Y.; Cao, A.; Qian, W.; Lu, Y.; Wei, F. Energy‐Absorbing Hybrid Composites Based on Alternate Carbon‐Nanotube and Inorganic Layers. Adv. Mater. 2009, 21, 2876–2880. DOI: 10.1002/adma.200900123.
  • Zhang, Q.; Zhao, M. Q.; Huang, J. Q.; Nie, J. Q.; Wei, F. Mass Production of Aligned Carbon Nanotube Arrays by Fluidized Bed Catalytic Chemical Vapor Deposition. Carbon 2010, 48, 1196–1209. DOI: 10.1016/j.carbon.2009.11.043.
  • Li, X.; Zhang, J.; Shen, L.; Ma, Y.; Lei, W.; Cui, Q.; Zou, G. Preparation and Characterization of Graphitic Carbon Nitride through Pyrolysis of Melamine. Appl. Phys. A 2009, 94, 387–392. DOI: 10.1007/s00339-008-4816-4.
  • Zhang, Q.; Zhou, W.; Qian, W.; Xiang, R.; Huang, J.; Wang, D.; Wei, F. Synchronous Growth of Vertically Aligned Carbon Nanotubes with Pristine Stress in the Heterogeneous Catalysis Process. J. Phys. Chem. C 2007, 111, 14638–14643. DOI: 10.1021/jp073218h.
  • Robertson, J. Heterogeneous Catalysis Model of Growth Mechanisms of Carbon Nanotubes, Graphene and Silicon Nanowires. J. Mater. Chem. 2012, 22, 19858. DOI: 10.1039/c2jm33732k.
  • Qian, W.; Wei, F.; Liu, T.; Wang, Z.; Li, Y. What Causes the Carbon Nanotubes Collapse in a Chemical Vapor Deposition Process. J. Chem. Phys. 2003, 118, 878–882. DOI: 10.1063/1.1527897.
  • Huang, J. Q.; Zhang, Q.; Xu, G. H.; Qian, W. Z.; Wei, F. Substrate Morphology Induced Self-Organization into Carbon Nanotube Arrays, Ropes, and Agglomerates. Nanotechnology 2008, 19, 435602. DOI: 10.1088/0957-4484/19/43/435602.
  • Avdeeva, L. B.; Reshetenko, T. V.; Ismagilov, Z. R.; Likholobov, V. A. Iron-Containing Catalysts of Methane Decomposition: Accumulation of Filamentous Carbon. Appl. Catal. A 2002, 228, 53–63. DOI: 10.1016/S0926-860X(01)00959-0.
  • Chiou, W. C.; Carter, E. A. Structure and Stability of Fe3C-Cementite Surfaces from First Principles. Surf. Sci. 2003, 530, 88–100. DOI: 10.1088/0957-4484/19/43/435602.
  • Van Dommele, S.; Romero-Izquirdo, A.; Brydson, R.; De Jong, K. P.; Bitter, J. H. Tuning Nitrogen Functionalities in Catalytically Grown Nitrogen-Containing Carbon Nanotubes. Carbon 2008, 46, 138–148. DOI: 10.1016/j.carbon.2007.10.034.
  • Reyes-Reyes, M.; Grobert, N.; Kamalakaran, R.; Seeger, T.; Golberg, D.; Rühle, M.; Bando, Y.; Terrones, H.; Terrones, M. Efficient Encapsulation of Gaseous Nitrogen inside Carbon Nanotubes with Bamboo-like Structure Using Aerosol Thermolysis. Chem. Phys. Lett. 2004, 396, 167–173. DOI: 10.1016/j.cplett.2004.07.125.
  • Choi, H. C.; Bae, S. Y.; Jang, W.-S.; Park, J.; Song, H. J.; Shin, H.-J.; Jung, H.; Ahn, J.-P. Release of N(2) from the Carbon Nanotubes via High-Temperature Annealing. J. Phys. Chem. B 2005, 109, 1683–1688. DOI: 10.1021/jp046098b.
  • Choi, H. C.; Bae, S. Y.; Park, J.; Seo, K.; Kim, C.; Kim, B.; Shin, H. J. Experimental and Theoretical Studies on the Structure of N-Doped Carbon Nanotubes: Possibility of Intercalated Molecular N2. Appl. Phys. Lett. 2004, 85, 5742–5744. DOI: 10.1063/1.1835994.
  • Chizari, K.; Vena, A.; Laurentius, L.; Sundararaj, U. The Effect of Temperature on the Morphology and Chemical Surface Properties of Nitrogen-Doped Carbon Nanotubes. Carbon 2014, 68, 369–379. DOI: 10.1016/j.carbon.2013.11.013.
  • Liu, H.; Zhang, Y.; Li, R.; Sun, X.; Désilets, S.; Abou-Rachid, H.; Jaidann, M.; Lussier, L.-S. Structural and Morphological Control of Aligned Nitrogen-Doped Carbon Nanotubes. Carbon 2010, 48, 1498–1507. DOI: 10.1016/j.carbon.2009.12.045.
  • Liu, J.; Webster, S.; Carroll, D. L. Temperature and Flow Rate of NH3 Effects on Nitrogen Content and Doping Environments of Carbon Nanotubes Grown by Injection CVD Method. J. Phys. Chem. B 2005, 109, 15769–15774. DOI: 10.1021/jp050123b.
  • Arrigo, R.; Hävecker, M.; Schlögl, R.; Su, D. S. Dynamic Surface Rearrangement and Thermal Stability of Nitrogen Functional Groups on Carbon Nanotubes. Chem. Commun. 2008, 40, 4891–4893. DOI: 10.1039/b812769g.
  • Arrigo, R.; Hävecker, M.; Wrabetz, S.; Blume, R.; Lerch, M.; McGregor, J.; Parrott, E. P. J.; Zeitler, J. A.; Gladden, L. F.; Knop-Gericke, A.; et al. Tuning the Acid/Base Properties of Nanocarbons by Functionalization via Amination. J. Am. Chem. Soc. 2010, 132, 9616–9630. DOI: 10.1021/ja910169v.
  • Sharifi, T.; Nitze, F.; Barzegar, H. R.; Tai, C. W.; Mazurkiewicz, M.; Malolepszy, A.; Wã¥Gberg, T. Nitrogen Doped Multi Walled Carbon Nanotubes Produced by CVD-Correlating XPS and Raman Spectroscopy for the Study of Nitrogen Inclusion. Carbon 2012, 50, 3535–3541. DOI: 10.1016/j.carbon.2012.03.022.
  • Bulusheva, L. G.; Okotrub, A. V.; Kinloch, I. A.; Asanov, I. P.; Kurenya, A. G.; Kudashov, A. G.; Chen, X.; Song, H. Effect of Nitrogen Doping on Raman Spectra of Multi-Walled Carbon Nanotubes. Phys. Stat. Solidi B 2008, 245, 1971–1974. DOI: 10.1002/pssb.200879592.
  • Maldonado, S.; Morin, S.; Stevenson, K. J. Structure, Composition, and Chemical Reactivity of Carbon Nanotubes by Selective Nitrogen Doping. Carbon 2006, 44, 1429–1437. [Database] DOI: 10.1016/j.carbon.2005.11.027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.