172
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and characterization of flax shive activated carbon

, , & ORCID Icon
Pages 232-243 | Received 29 Sep 2020, Accepted 02 Oct 2020, Published online: 12 Oct 2020

References

  • Nor, N. M.; Chung, L. L.; Teong, L. K.; Mohamed, A. R. Synthesis of Activated Carbon from Lignocellulosic Biomass and Its Applications in Air Pollution Control—a Review. J. Environ. Chem. Eng. 2013, 1, 658–666. DOI: 10.1016/j.jece.2013.09.017.
  • Tay, T.; Ucar, S.; Karagöz, S. Preparation and Characterization of Activated Carbon from Waste Biomass. J. Hazard. Mater. 2009, 165, 481–485. DOI: 10.1016/j.jhazmat.2008.10.011.
  • Feng, H.; Li, J.; Wang, L. Preparation of Biodegradable Flax Shive Cellulose-Based Superabsorbent Polymer under Microwave Radiation. BioRes. 2010, 5, 1484–1495.
  • Wang, D. B.; Geng, Z.; Li, B.; Zhang, C. M. High Performance Electrode Materials for Electric Double-Layer Capacitors Based on Biomass-Derived Activated Carbons. Electrochim. Acta 2015, 173, 377–384. DOI: 10.1016/j.electacta.2015.05.080.
  • Shi, Q.; Zhang, J.; Zhang, C.; Li, C.; Zhang, B.; Hu, W.; Xu, J.; Zhao, R. Preparation of Activated Carbon from Cattail and Its Application for Dyes Removal. J. Environ. Sci. 2010, 22, 91–97. DOI: 10.1016/S1001-0742(09)60079-6.
  • Dai, C. C.; Wan, J. F.; Geng, W. D.; Song, S. J.; Ma, F. W.; Shao, J. Q. KOH Direct Treatment of Kombucha and in Situ Activation to Prepare Hierarchical Porous Carbon for High-Performance Supercapacitor Electrodes. J. Solid State Electrochem. 2017, 21, 2929–2938. DOI: 10.1007/s10008–017-3631-2.
  • Yahya, M. A.; Al-Qodah, Z.; Ngah, C. W. Z. Agricultural Bio-Waste Materials as Potential Sustainable Precursors Used for Activated Carbon Production: A Review. Renew. Sust. Energ. Rev. 2015, 46, 218–235. DOI: 10.1016/j.rser.2015.02.051.
  • Abioye, A. M.; Ani, F. N. Recent Development in the Production of Activated Carbon Electrodes from Agricultural Waste Biomass for Supercapacitors: A Review. Renew. Sust. Energ. Rev. 2015, 52, 1282–1293. DOI: 10.1016/j.rser.2015.07.129.
  • Rashidi, N. A.; Yusup, S. A Review on Recent Technological Advancement in the Activated Carbon Production from Oil Palm Wastes. Chem. Eng. J. 2017, 314, 277–290. DOI: 10.1016/j.cej.2016.11.059.
  • Sevilla, M.; Ferrero, G. A.; Fuertes, A. B. Beyond KOH Activation for the Synthesis of Superactivated Carbons from Hydrochar. Carbon 2017, 114, 50–58. DOI: 10.1016/j.carbon.2016.12.010.
  • Nguyen, D. T.; Taguchi, K. A Water-Activated Battery Based on Activated Carbon. IJECE 2019, 9, 4053–4059. DOI: 10.11591/ijece.v9i5.pp4053–4059.
  • Klasson, K. T.; Wartelle, L. H.; Lima, I. M.; Marshall, W. E.; Akin, D. E. Activated Carbons from Flax Shive and Cotton Gin Waste as Environmental Adsorbents for the Chlorinated Hydrocarbon Trichloroethylene. Bioresour. Technol. 2009, 100, 5045–5050. DOI: 10.1016/j.biortech.2009.02.068.
  • Thomas, B. N.; George, S. C. Production of Activated Carbon from Natural Sources. Trends Green Chem. 2015, 1, 1–7. DOI: 10.21767/2471-9889.100007.
  • Somasundaram, S.; Sekar, K.; Gupta, V. K.; Ganesan, S. Synthesis and Characterization of Mesoporous Activated Carbon from Rice Husk for Adsorption of Glycine from Alcohol-Aqueous Mixture. J. Mol. Liq. 2013, 177, 416–425. DOI: 10.1016/j.molliq.2012.09.022.
  • Seitkhan, A. Synthesis of Carbonized Nano Mesoporous Sorbents Based on Vegetable Raw Materials. Nanosci. Nanoeng. 2013, 1, 41–44. DOI: 10.13189/nn.2013.010106.
  • Wu, L.; Shang, Z.; Wang, H.; Wan, W.; Gao, X.; Li, Z.; Kobayashi, N. Production of Activated Carbon from Walnut Shell by CO2 Activation in a Fluidized Bed Reactor and Its Adsorption Performance of Copper Ion. J. Mater. Cycles Waste Manag. 2018, 20, 1676–1688. DOI: 10.1007/s10163-018-0730-9.
  • Li, J.; Li, K.; Zhang, T.; Wang, S.; Jiang, Y.; Bao, Y.; Tie, M. Development of Activated Carbon from Windmill Palm Sheath Fiber by KOH Activation. Fibers Polym. 2016, 17, 880–887. DOI: 10.1007/s12221-016-6328-8.
  • Vaughan, T.; Seo, C. W.; Marshall, W. E. Removal of Selected Metal Ions from Aqueous Solution Using Modified Corncobs. Bioresour. Technol. 2001, 78, 133–139. DOI: 10.1016/S0960-8524(01)00007-4.
  • Dai, C.; Wan, J.; Yang, J.; Qu, S.; Jin, T.; Ma, F.; Shao, J. H3PO4 Solution Hydrothermal Carbonization Combined with KOH Activation to Prepare Argy Wormwood-Based Porous Carbon for High-Performance Supercapacitors. Appl. Surf. Sci. 2018, 444, 105–117. DOI: 10.1016/j.apsusc.2018.02.261.
  • Varila, T.; Bergna, D.; Lahti, R.; Romar, H.; Hu, T.; Lassi, U. Activated Carbon Production from Peat Using ZnCl2: Characterization and Applications. BioRes 2017, 12, 8078–8092. DOI: 10.15376/biores.12.4.8078-8092.
  • Manocha, S.; Manocha, L. M.; Joshi, P.; Patel, B.; Dangi, G.; Verma, N. Activated Carbon from Biomass. AIP Conf. Proc. 2013, 1538, 120–123. DOI: 10.1063/1.4810041.
  • Li, S.; Han, K.; Si, P.; Li, J.; Lu, C. High–Performance Activated Carbons Prepared by KOH Activation of Gulfweed for Supercapacitors. Int. J. Electrochem. Sci. 2018, 13, 1728–1743. DOI: 10.20964/2018.02.08.
  • Fałtynowicz, H.; Kaczmarczyk, J.; Kułażyński, M. Preparation and Characterization of Activated Carbons from Biomass Material – Giant Knotweed (Reynoutria Sachalinensis). Open Chem. 2015, 13, 1150–1156. DOI: 10.1515/chem-2015-0128.
  • Lei, Y. U.; Chen, T. U.; Yongming, L. U. O. Fabrication, Characterization and Evaluation of Mesoporous Activated Carbons from Agricultural Waste: Jerusalem Artichoke Stalk as an Example. Front. Environ. Sci. Eng. 2015, 9, 206–215. DOI: 10.1007/s11783-014-0631-7.
  • Dizbay-Onat, M.; Vaidya, U. K.; Balanay, J. A. G.; Lungu, C. T. Preparation and Characterization of Flax, Hemp and Sisal Fiber-Derived Mesoporous Activated Carbon Adsorbents. Adsorpt. Sci. Technol. 2018, 36, 441–457. DOI: 10.1177/0263617417700635.
  • Lacerda, V. S.; López-Sotelo, J. B.; Correa-Guimarães, A.; Hernández-Navarro, S.; Sánchez-Báscones, M.; Navas-Gracia, L. M.; Martín-Ramos, P.; Martín-Gil, J. Rhodamine B Removal with Activated Carbons Obtained from Lignocellulosic Waste. J. Environ. Manag. 2015, 155, 67–76. DOI: 10.1016/j.jenvman.2015.03.007.
  • Chowdhury, Z. Z.; Zain, S. M.; Khan, R. A.; Ashraf, M. A. Preparation, Characterization and Adsorption Performance of the KOH-Activated Carbons Derived from Kenaf Fiber for Lead (II) Removal from Waste Water. Sci. Res. Essays 2011, 6, 6185–6196. DOI: 10.5897/SRE11.1436.
  • Bhomick, P. C.; Supong, A.; Karmaker, R.; Baruah, M.; Pongener, C.; Sinha, D. Activated Carbon Synthesized from Biomass Material Using Single-Step KOH Activation for Adsorption of Fluoride: Experimental and Theoretical Investigation. Korean J. Chem. Eng. 2019, 36, 551–562. DOI: 10.1007/s11814-019-0234-x.
  • Kuang, Y.; Zhang, X.; Zhou, S. Adsorption of Methylene Blue in Water onto Activated Carbon by Surfactant Modification. Water 2020, 12, 587. DOI: 10.3390/w12020587.
  • Vijayalakshmi, G.; Ramkumar, B.; Mohan, S. C. Research Article Isotherm and Kinetic Studies of Methylene Blue Adsorption Using Activated Carbon Prepared from Teak Wood Waste Biomass. J. Applied. Sci. 2019, 19, 827–836. DOI: 10.3923/jas.2019.827.836.
  • Singh, S.; Sidhu, G. K.; Singh, H. Removal of Methylene Blue Dye Using Activated Carbon Prepared from Biowaste Precursor. Indian Chem. Eng. 2019, 61, 28–39. DOI: 10.1080/00194506.2017.1408431.
  • Swan, N. B.; Zaini, M. A. A. Adsorption of Malachite Green and Congo Red Dyes from Water: Recent Progress and Future Outlook. Ecol. Chem. Eng. S 2019, 26, 119–132. DOI: 10.1515/eces-2019-0009.
  • Del Río, J. C.; Rencoret, J.; Gutiérrez, A.; Nieto, L.; Jiménez-Barbero, J.; Martínez, Á. T. Structural Characterization of Guaiacyl-Rich Lignins in Flax (Linum Usitatissimum) Fibers and Shives. J. Agric. Food Chem. 2011, 59, 11088–11099. DOI: 10.1021/jf201222r.
  • Marshall, W. E.; Wartelle, L. H.; Akin, D. E. Flax Shive as a Source of Activated Carbon for Metals Remediation. Biores. 2007, 2, 82–90. DOI: 10.15376/biores.2.1.82-90.
  • Cox, M.; Pichugin, A. A.; El-Shafey, E. I.; Appleton, Q. Sorption of Precious Metals onto Chemically Prepared Carbon from Flax Shive. Hydrometallurgy 2005, 78, 137–144. DOI: 10.1016/j.hydromet.2004.12.006.
  • Tan, H. T.; Lee, K. T.; Mohamed, A. R. Pretreatment of Lignocellulosic Palm Biomass Using a Solvent-Ionic Liquid [BMIM]Cl for Glucose Recovery: An Optimisation Study Using Response Surface Methodology. Carbohyd. Polym. 2011, 83, 1862–1868. DOI: 10.1016/j.carbpol.2010.10.05.
  • Ayeni, A. O.; Hymore, F. K.; Mudliar, S. N.; Deshmukh, S. C.; Satpute, D. B.; Omoleye, J. A.; Pandey, R. A. Hydrogen Peroxide and Lime Based Oxidative Pretreatment of Wood Waste to Enhance Enzymatic Hydrolysis for a Biorefinery: Process Parameters Optimization Using Response Surface Methodology. Fuel 2013, 106, 187–194. DOI: 10.1016/j.fuel.2012.12.078.
  • Lee, X. J.; Lee, L. Y.; Gan, S.; Thangalazhy-Gopakumar, S.; Ng, H. K. Biochar Potential Evaluation of Palm Oil Wastes through Slow Pyrolysis: Thermochemical Characterization and Pyrolytic Kinetic Studies. Bioresour. Technol. 2017, 236, 155–163. DOI: 10.1016/j.biortech.2017.03.105.
  • Akkaya, G.; Güzel, F. Application of Some Domestic Wastes as New Low-Cost Biosorbents for Removal of Methylene Blue: Kinetic and Equilibrium Studies. Chem. Eng. Comm. 2014, 201, 557–578. DOI: 10.1080/00986445.2013.780166.
  • Prusov, A. N.; Prusova, S. M.; Zakharov, A. G.; Radugin, M. V.; Bazanov, A. V. Green Synthesis of Nanoparticles of Copper and Its Oxides in a Nanoporous Carbon Matrix. Fuller. Nanotub. Car. N 2019, 27, 967–977. DOI: 10.1080/1536383X.2019.1679780.
  • Qajar, A.; Peer, M.; Rajagopalan, R.; Liu, Y.; Brown, C.; Foley, H. C. Surface Compression of Light Adsorbates inside Microporous PFA-Derived Carbons. Carbon 2013, 60, 538–549. DOI: 10.1016/j.carbon.2013.04.001.
  • Hu, W.; Zhang, M.; Ton-That, M.-T.; Ngo, T-d. A Comparison of Flax Shive and Extracted Flax Shive Reinforced PP Composites. Fibers Polym. 2014, 15, 1722–1728. DOI: 10.1007/s12221-014-1722-6.
  • Alawar, A.; Hamed, A. M.; Al-Kaabi, K. Characterization of Treated Date Palm Tree Fibre as Composite Reinforcement. Compos. Part B Eng. 2009, 40, 601–606. DOI: 10.1016/j.compositesb.2009.04.018.
  • De Rosa, I. M.; Kenny, J. M.; Puglia, D.; Santulli, C.; Sarasini, F. Morphological, Thermal and Mechanical Characterization of Okra (Abelmoschus Esculentus) Fibres as Potential Reinforcement in Polymer Composites. Compos. Sci. Technol. 2010, 70, 116–122. DOI: 10.1016/j.compscitech.2009.09.013.
  • Liu, W.; Mohanty, K.; Drzal, L. T.; Askel, P.; Misra, M. Effects of Alkali Treatment on the Structure, Morphology of Native Grass Fibres as Reinforcements for Polymer Matrix Composites. J. Mater. Sci. 2004, 39, 1051–1054. DOI: 10.1023/B:JMSC.0000012942.83614.75.
  • Pirbazari, A. E.; Saberikhah, E.; Badrouh, M.; Emami, M. S. Alkali Treated Foumanat Tea Waste as an Efficient Adsorbent Form Ethylene Blue Adsorption from Aqueous Solution. Water Resour. Ind. 2014, 6, 64–80. DOI: 10.1016/j.wri.2014.07.003.
  • Khiari, B.; Ibn Ferjani, A.; Azzaz, A. A.; Jellali, S.; Limousy, L.; Jeguirim, M. Thermal Conversion of Flax Shives through Slow Pyrolysis Process: In-Depth Biochar Characterization and Future Potential Use. Biomass Conv. Bioref. 2020. DOI: 10.1007/s13399-020-00641-0.
  • Ahmad, M. S.; Mehmood, M. A.; Omar, S. A. A.; Ye, G.; Luo, H.; Ibrahim, M.; Rashid, U.; Nehdi, I. A.; Qadir, G. Kinetic Analyses and Pyrolytic Behavior of Para Grass (Urochloa Mutica) for Its Bioenergy Potential. Bioresour. Technol. 2017, 224, 708–713. DOI: 10.1016/j.biortech.2016.10.090.
  • Mehmood, M. A.; Ye, G.; Luo, H.; Liu, C.; Malik, S.; Afzal, I.; Xu, J.; Ahmad, M. S. Pyrolysis and Kinetic Analyses of Camel Grass (Cymbopogon Schoenanthus) for Bioenergy. Bioresour. Technol. 2017, 228, 18–24. DOI: 10.1016/j.biortech.2016.12.096.
  • Prusov, A. N.; Prusova, S. M.; Zakharov, A. G.; Bazanov, A. V.; Ivanov, V. K. Potential of Jerusalem Artichoke Stem for Cellulose Production. Eurasian Chem. Tech. J. 2019, 21, 173–182. DOI: 10.18321/ectj828.
  • Yang, H.; Yan, R.; Chen, H.; Lee, D. H.; Zheng, C. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel 2007, 86, 1781–1788. DOI: 10.1016/j.fuel.2006.12.013.
  • Prusov, A. N.; Prusova, S. M.; Bazanov, A. V.; Smirnov, P. R.; Radugin, M. V.; Zakharov, A. G.; Ivanov, V. K. Carbonization of the Modified Cellulose of Annual Crops. Russ. J. Gen. Chem. 2019, 89, 1316–1323. DOI: 10.1134/S107036321906029X.
  • El-Sayed, S. Thermal Decomposition, Kinetics and Combustion Parameters Determination for Two Different Sizes of Rice Husk Using TGA. EAEF 2019, 12, 460–469. DOI: 10.1016/j.eaef.2019.08.002.
  • Hu, S.; Jess, A.; Xu, M. Kinetic Study of Chinese Biomass Slow Pyrolysis: Comparison of Different Kinetic Models. Fuel 2007, 86, 2778–2788. DOI: 10.1016/j.fuel.2007.02.031.
  • Huang, Y.; Ma, E.; Zhao, G. Thermal and Structure Analysis on Reaction Mechanisms during the Preparation of Activated Carbon Fibers by KOH Activation from Liquefied Wood-Based Fibers. Ind. Crop. Prod. 2015, 69, 447–455. DOI: 10.1016/j.indcrop.2015.03.002.
  • Lillo-Rodenas, M. A.; Juan-Juan, J.; Cazorla-Amoros, D.; Linares-Solano, A. About Reactions Occurring during Chemical Activation with Hydroxides. Carbon 2004, 42, 1371–1375. DOI: 10.1016/j.carbon.2004.01.008.
  • Raymundo-Piñero, E.; Azaïs, P.; Cacciaguerra, T.; Cazorla-Amorós, D.; Linares-Solano, A.; Béguin, F. KOH and NaOH Activation Mechanisms of Multiwalled Carbon Nanotubes with Different Structural Organisation. Carbon 2005, 43, 786–795. DOI: 10.1016/j.carbon.2004.11.005.
  • McKee, D. W. Gasification of Graphite in Carbon Dioxide and Water Vapor. The Catalytic Effects of Alkali Metal Salts. Carbon 1982, 20, 59–66. DOI: 10.1016/0008-6223(82)90075-6.
  • Khiari, B.; Ghouma, I.; Ferjani, A. I.; Azzaz, A. A.; Jellali, S.; Limousy, L.; Jeguirim, M. Kenaf Stems: Thermal Characterization and Conversion for Biofuel and Biochar Production. Fuel 2020, 262, 116654. DOI: 10.1016/j.fuel.2019.116654.
  • Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. DOI: 10.1515/pac-2014-1117.
  • Mahamad, M. N.; Zaini, M. A. A.; Zakaria, Z. A. Preparation and Characterization of Activated Carbon from Pineapple Waste Biomass for Dye Removal. Int. Biodeter. Biodegr. 2015, 102, 274–280. DOI: 10.1016/j.ibiod.2015.03.009.
  • Basta, A. H.; Fierro, V.; El-Saied, H.; Celzard, A. 2-Steps KOH Activation of Rice Straw: An Efficient Method for Preparing High-Performance Activated Carbons. Bioresour. Technol 2009, 100, 3941–3947. DOI: 10.1016/j.biortech.2009.02.028.
  • Sotomayor, F. J.; Cychosz, K. A.; Thommes, M. Characterization of Micro/Mesoporous Materials by Physisorption: Concepts and Case Studies. Acc. Mater. Surf. Res. 2018, 3, 34–50.
  • Contescu, C. I.; Adhikari, S. P.; Gallego, N. C.; Evans, N. D.; Biss, B. E. Activated Carbons Derived from High-Temperature Pyrolysis of Lignocellulosic Biomass. С – J. Carbon Res 2018, 4, 51. DOI: 10.3390/c4030051.
  • Pittman, C. U.; He, G. R.; Wu, B.; Gardner, S. D. Chemical Modification of Carbon Fiber Surfaces by Nitric Acid Oxidation Followed by Reaction with Tetraethylenepentamine. Carbon 1997, 35, 317–331. DOI: 10.1016/s0008-6223(97)89608-x.
  • Hourieh, M. A.; Alaya, M. N.; Youssef, A. M. Carbon Dioxide Adsorption and Decolourizing Power of Activated Carbons Prepared from Pistacia Shells. Adsorpt. Sci. Technol. 1997, 15, 419–427. DOI: 10.1177/026361749701500602.
  • Ahmed, M. J. Application of Agricultural Based Activated Carbons by Microwave and Conventional Activations for Basic Dye Adsorption. Review. J. Environ. Chem. Eng. 2016, 4, 89–99. DOI: 10.1016/j.jece.2015.10.027.
  • Attia, A. A.; Girgis, B. S.; Fathy, N. A. Removal of Methylene Blue by Carbons Derived from Peach Stones by H3PO4 Activation: batch and Column Studies. Dyes Pigments 2008, 76, 282–289. DOI: 10.1016/j.dyepig.2006.08.039.
  • Chen, Y.-D.; Chen, W.-Q.; Huang, B.; Huang, M.-J. Process Optimization of K2C2O4-Activated Carbon from Kenafcore Using Box–Behnken Design. Chem. Eng. Res. Design 2013, 91, 1783–1789. DOI: 10.1016/j.cherd.2013.02.024.
  • Wang, S.; Zhu, Z. H.; Coomes, A.; Haghseresht, F.; Lu, G. Q. The Physical and Surface Chemical Characteristics of Activated Carbons and the Adsorption of Methylene Blue from Wastewater. J. Colloid Interf. Sci. 2005, 284, 440–446. DOI: 10.1016/j.jcis.2004.10.050.
  • Thabede, P. M.; Shooto, N. D.; Naidoo, E. B. Removal of Methylene Blue Dye and Lead Ions from Aqueous Solution Using Activated Carbon from Black Cumin Seeds. S. Afr. J. Chem. Eng. 2020, 33, 39–50. DOI: 10.1016/j.sajce.2020.04.002.
  • Lozano-Castelló, D.; Calo, J. M.; Cazorla-Amorós, D.; Linares-Solano, A. Carbon Activation with KOH as Explored by Temperature Programmed Techniques, and the Effects of Hydrogen. Carbon 2007, 45, 2529–2536. DOI: 10.1016/j.carbon.2007.08.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.