170
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Tribological behaviors of polyelectrolyte capped carbon nanoparticles in polyethylene glycol

, &
Pages 365-374 | Received 21 Oct 2020, Accepted 26 Oct 2020, Published online: 19 Nov 2020

References

  • Cai, M.; Guo, R.; Zhou, F.; Liu, W. Lubricating a Bright Future: Lubrication Contribution to Energy Saving and Low Carbon Emission. Sci. China Technol. Sci. 2013, 56, 2888–2913. DOI: 10.1007/s11431-013-5403-2.
  • Tang, Z.; Li, S. A Review of Recent Developments of Friction Modifiers for Lliquid Lubricants (2007-Present). Curr. Opin. Solid State Mater. Sci. 2014, 18, 119–139. DOI: 10.1016/j.cossms.2014.02.002.
  • Yao, M.; Liang, Y.; Xia, Y.; Zhou, F. Bisimidazolium Ionic Liquids as the High-Performance Antiwear Additives in Poly(Ethylene Glycol) for Steel-Steel Contacts. ACS Appl. Mater Interfaces 2009, 1, 467–471. DOI: 10.1021/am800132z.
  • Zhang, H.; Xia, Y.; Yao, M.; Jia, Z.; Liu, Z. The Influences of Methyl Group at C2 Position in Imidazolium Ring on Tribological Properties. Tribol. Lett. 2009, 36, 105–111. DOI: 10.1007/s11249-009-9465-z.
  • Cai, M.; Liang, Y.; Yao, M.; Xia, Y.; Zhou, F.; Liu, W. Imidazolium Ionic Liquids as Antiwear and Antioxidant Additive in Poly(Ethylene Glycol) for Steel/Steel Contacts. ACS Appl. Mater Interfaces 2010, 2, 870–876. DOI: 10.1021/am900847j.
  • Cai, M.; Liang, Y.; Zhou, F.; Liu, W. Tribological Properties of Novel Imidazolium Ionic Liquids Bearing Benzotriazole Group as the Antiwear/Anticorrosion Additive in Poly(Ethylene Glycol) and Polyurea Grease for Steel/Steel Contacts. ACS Appl. Mater Interfaces 2011, 3, 4580–4592. DOI: 10.1021/am200826b.
  • Cai, M.; Liang, Y.; Zhou, F.; Liu, W. Anticorrosion Imidazolium Ionic Liquids as the Additive in Poly(Ethylene Glycol) for Steel/Cu-Sn Alloy Contacts. Faraday Discuss. 2012, 156, 147–157. DOI: 10.1039/c2fd00124a.
  • Fan, M.; Liang, Y.; Zhou, F.; Liu, W. Dramatically Improved Friction Reduction and Wear Resistance by in Situ Formed Ionic Liquids. RSC Adv. 2012, 2, 6824–6830. DOI: 10.1039/c2ra20888a.
  • Cai, M.; Liang, Y.; Zhou, F.; Liu, W. A Novel Imidazolium Salt with Antioxidation and Anticorrosion Dual Functionalities as the Additive in Poly(Ethylene Glycol) for Steel/Steel Contacts. Wear 2013, 306, 197–208. DOI: 10.1016/j.wear.2012.09.001.
  • Gusain, R.; Gupta, P.; Saran, S.; Khatri, O. P. Halogen-Free Bis(Imidazolium)/Bis(Ammonium)-Di[Bis(Salicylato)Borate] Ionic Liquids as Energy-Efficient and Environmentally Friendly Lubricant Additives. ACS Appl. Mater Interfaces 2014, 6, 15318–15328. DOI: 10.1021/am503811t.
  • Taher, M.; Shah, F. U.; Filippov, A.; de Baets, P.; Glavatskih, S.; Antzutkin, O. N. Halogen-Free Pyrrolidinium Bis(Mandelato) Borate Ionic Liquids: Some Physicochemical Properties and Lubrication Performance as Additives to Polyethylene Glycol. RSC Adv. 2014, 4, 30617–30623. DOI: 10.1039/c4ra02551b.
  • Aathira, M. S.; Khatri, P. K.; Jain, S. L. Synthesis and Evaluation of Bio-Compatible Cholinium Amino Acid Ionic Liquids for Lubrication Applications. J. Ind. Eng. Chem. 2018, 64, 420–429. DOI: 10.1016/j.jiec.2018.04.004.
  • Zhao, L.; Cai, T.; Zhang, Y.; Ye, M.; Shang, W.; Liu, D.; Tong, D.; Liu, S. Synthesis, Characterization and Tribological Evaluation of Novel 1,4-Diazabicyclo 2.2.2 Octane Based Dicationic Ionic Liquids as Efficient Antiwear Lubricant Additives. Sci. China Technol. Sci. 2019, 62, 252–262. DOI: 10.1007/s11431-018-9384-2.
  • Zhang, M.; Wang, X.; Fu, X.; Liu, W. Investigation of Electrical Contact Resistance of Ag Nanoparticles as Additives Added to PEG 300. Tribol. Trans. 2009, 52, 157–164. DOI: 10.1080/10402000802167695.
  • Gusain, R.; Khatri, O. P. Ultrasound Assisted Shape Regulation of CuO Nanorods in Ionic Liquids and Their Use as Energy Efficient Lubricant Additives. J. Mater. Chem. A 2013, 1, 5612–5619. DOI: 10.1039/c3ta10248c.
  • Gupta, B.; Panda, K.; Kumar, N.; Melvin, A. A.; Dash, S.; Tyagi, A. K. Chemically Grafted Graphite Nanosheets Dispersed in Poly(Ethylene-Glycol) by Gamma-Radiolysis for Enhanced Lubrication. RSC Adv. 2015, 5, 53766–53775. DOI: 10.1039/C5RA07528A.
  • Choudhary, S.; Mungse, H. P.; Khatri, O. P. Dispersion of Alkylated Graphene in Organic Solvents and Its Potential for Lubrication Applications. J. Mater. Chem. 2012, 22, 21032–21039. [Database] DOI: 10.1039/c2jm34741e.
  • Guo, Y.; Zhang, L.; Zhang, G.; Wang, D.; Wang, T.; Wang, Q. High Lubricity and Electrical Responsiveness of Solvent-Free Ionic SiO2 Nanofluids. J. Mater. Chem. A 2018, 6, 2817–2827. DOI: 10.1039/c7ta09649f.
  • Guo, Y.; Guo, L.; Li, G.; Zhang, L.; Zhao, F.; Wang, C.; Zhang, G. Solvent-Free Ionic Nanofluids Based on Graphene Oxide-Silica Hybrid as High-Performance Lubricating Additive. Appl. Surf. Sci. 2019, 471, 482–493. DOI: 10.1016/j.apsusc.2018.12.003.
  • Gulzar, M.; Masjuki, H. H.; Kalam, M. A.; Varman, M.; Zulkifli, N. W. M.; Mufti, R. A.; Zahid, R. Tribological Performance of Nanoparticles as Lubricating Oil Additives. J. Nanopart. Res. 2016, 18, 223. DOI: 10.1007/s11051-016-3537-4.
  • Ivanov, M.; Shenderova, O. Nanodiamond-Based Nanolubricants for Motor Oils. Curr. Opin. Solid State Mater. Sci. 2017, 21, 17–24. DOI: 10.1016/j.cossms.2016.07.003.
  • Ivanov, M. G.; Ivanov, D. M.; Pavlyshko, S. V.; Petrov, I.; Vargas, A.; McGuire, G.; Shenderova, O. Nanodiamond-Based Nanolubricants. Fullerenes Nanotubes Carbon Nanostruct. 2012, 20, 606–610. DOI: 10.1080/1536383x.2012.657010.
  • Afifi, E. M.; Elshalakny, A. B.; Osman, T. A.; Kamel, B. M.; Zian, H. Investigation of Gear Performance of MLNGPs as an Additive on Polyamide 6 Spur Gear. Fullerenes Nanotubes Carbon Nanostruct. 2018, 26, 351–359. DOI: 10.1080/1536383X.2018.1438413.
  • Liu, B.; Li, H. Alkylated Fullerene as Lubricant Additive in Paraffin Oil for Steel/Steel Contacts. Fullerenes Nanotubes Carbon Nanostruct. 2016, 24, 712–719. DOI: 10.1080/1536383X.2016.1231178.
  • Khalil, W.; Mohamed, A.; Bayoumi, M.; Osman, T. A. Tribological Properties of Dispersed Carbon Nanotubes in Lubricant. Fullerenes Nanotubes Carbon Nanostruct. 2016, 24, 479–485. DOI: 10.1080/1536383x.2016.1188804.
  • Luo, N.; Xiang, J.; Shen, T.; Ma, Z. Gas-Liquid Detonation Synthesis of Graphite Coated Copper Nanoparticles and Tribological Performance as Lubricant Additives. Fullerenes Nanotubes Carbon Nanostruct. 2018, 26, 87–92. DOI: 10.1080/1536383x.2017.1403906.
  • Zayed, A. S.; Kamel, B. M.; Osman, T. A.; Elkady, O. A.; Ali, S. Experimental Study of Tribological and Mechanical Properties of Aluminum Matrix Peinforced by Al2O3/CNTs. Fullerenes Nanotubes Carbon Nanostruct. 2019, 27, 538–544. DOI: 10.1080/1536383X.2019.1612882.
  • Liu, X.; Chen, Y. Synthesis of Polyethylene Glycol Modified Carbon Dots as a Kind of Excellent Water-Based Lubricant Additives. Fullerenes Nanotubes Carbon Nanostruct. 2019, 27, 400–409. DOI: 10.1080/1536383X.2019.1587747.
  • Gusain, R.; Mungse, H. P.; Kumar, N.; Ravindran, T. R.; Pandian, R.; Sugimura, H.; Khatri, O. P. Covalently Attached Graphene-Iionic Liquid Hybrid Nanomaterials: Synthesis, Characterization and Tribological Application. J. Mater. Chem. A 2016, 4, 926–937. DOI: 10.1039/c5ta08640j.
  • Cao, Z.; Xia, Y. Synthesis and Tribological Properties of Polyaniline Functionalized by Ionic Liquids. J. Mater. Sci. 2018, 53, 7060–7071. DOI: 10.1007/s10853-018-2028-7.
  • Shang, W.; Cai, T.; Zhang, Y.; Liu, D.; Sun, L.; Su, X.; Liu, S. Covalent Grafting of Chelated Othoborate Ionic Liquid on Carbon Quantum Dot towards High Performance Additives: Synthesis, Characterization and Tribological Evaluation. Tribol. Int. 2018, 121, 302–309. DOI: 10.1016/j.triboint.2018.01.054.
  • Wang, B.; Tang, W.; Lu, H.; Huang, Z. Ionic Liquid Capped Carbon Dots as a High-Performance Friction-Reducing and Antiwear Additive for Poly(Ethylene Glycol). J. Mater. Chem. A 2016, 4, 7257–7265. DOI: 10.1039/c6ta01098a.
  • Zhang, Y.; Cai, T.; Shang, W.; Liu, D.; Guo, Q.; Liu, S. Facile Synthesis of Photoluminescent Inorganic-Organic Hybrid Carbon Dots Codoped with B and N: Towards an Efficient Lubrication Additive. Dalton Trans. 2017, 46, 12306–12312. DOI: 10.1039/c7dt02389h.
  • Shang, W.; Cai, T.; Zhang, Y.; Liu, D.; Liu, S. Facile One Pot Pyrolysis Synthesis of Carbon Quantum Dots and Graphene Oxide Nanomaterials: All Carbon Hybrids as Eco-Environmental Lubricants for Low Friction and Remarkable Wear-Resistance. Tribol. Int. 2018, 118, 373–380. DOI: 10.1016/j.triboint.2017.09.029.
  • Shang, W.; Ye, M.; Cai, T.; Zhao, L.; Zhang, Y.; Liu, D.; Liu, S. Tuning of the Hydrophilicity and Hydrophobicity of Nitrogen Doped Carbon Dots: A Facile Approach towards High Efficient Lubricant Nanoadditives. J. Mol. Liq. 2018, 266, 65–74. DOI: 10.1016/j.molliq.2018.06.042.
  • Wang, B.; Hu, E.; Tu, Z.; David, K. D.; Hu, K.; Hu, X.; Yang, W.; Guo, J.; Cai, W.; Qian, W.; Zhang, H. Characterization and Tribological Properties of Rice Husk Carbon Nanoparticles Co-Doped with Sulfur and Nitrogen. Appl. Surf. Sci. 2018, 462, 944–954. DOI: 10.1016/j.apsusc.2018.08.165.
  • Ye, M.; Cai, T.; Shang, W.; Zhao, L.; Zhang, Y.; Liu, D.; Liu, S. Friction-Induced Transfer of Carbon Quantum Dots on the Interface: Microscopic and Spectroscopic Studies on the Role of Inorganic-Organic Hybrid Nanoparticles as Multifunctional Additive for Enhanced Lubrication. Tribol. Int. 2018, 127, 557–567. DOI: 10.1016/j.triboint.2018.06.033.
  • Cai, T.; Zhang, Y.; Liu, D.; Tong, D.; Liu, S. Nanostructured Molybdenum/Heteroatom-Doped Carbon Dots Nanohybrids for Lubrication by Direct Carbonization Route. Mater. Lett. 2019, 250, 20–24. DOI: 10.1016/j.matlet.2019.04.107.
  • Tang, W.; Wang, B.; Li, J.; Li, Y.; Zhang, Y.; Quan, H.; Huang, Z. Facile Pyrolysis Synthesis of Ionic Liquid Capped Carbon Dots and Subsequent Application as the Water-Based Lubricant Additives. J. Mater. Sci. 2019, 54, 1171–1183. DOI: 10.1007/s10853-018-2877-0.
  • Mou, Z.; Wang, B.; Lu, H.; Dai, S.; Huang, Z. Synthesis of Poly(Ionic Liquid)s Brush-Grafted Carbon Dots for High-Performance Lubricant Additives of Polyethylene Glycol. Carbon 2019, 154, 301–312. DOI: 10.1016/j.carbon.2019.08.014.
  • Mou, Z.; Wang, B.; Lu, H.; Quan, H.; Huang, Z. Branched Polyelectrolyte Grafted Carbon Dots as the High-Performance Friction-Reducing and Antiwear Additives of Polyethylene Glycol. Carbon 2019, 149, 594–603. DOI: 10.1016/j.carbon.2019.04.066.
  • Mou, Z.; Wang, B.; Huang, Z.; Lu, H. Ultrahigh Yield Synthesis of Mesoporous Carbon Nanoparticles as a Superior Lubricant Additive for Polyethylene Glycol. Dalton Trans. 2020, 49, 5283–5290. DOI: 10.1039/d0dt00053a.
  • Mou, Z.; Wang, B.; Huang, Z. Branched Polyethyleneimine Modified Carbon Nanoparticles as the Effective Additives of Water Lubrication. Fullerenes Nanotubes Carbon Nanostruct. 2019, 27, 899–906. DOI: 10.1080/1536383X.2019.1659246.
  • Wang, B.; Tang, W.; Lu, H.; Huang, Z. Hydrothermal Synthesis of Ionic Liquid-Capped Carbon Quantum Dots with High Thermal Stability and Anion Responsiveness. J. Mater. Sci. 2015, 50, 5411–5418. DOI: 10.1007/s10853-015-9085-y.
  • Liang, S.; Shen, Z.; Yi, M.; Liu, L.; Zhang, X.; Ma, S. In-Situ Exfoliated Graphene for High-Performance Water-Based Lubricants. Carbon 2016, 96, 1181–1190. DOI: 10.1016/j.carbon.2015.10.077.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.