299
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Microwave-assisted cross-coupling synthesis of aryl functionalized MWCNTs and investigation of hydrogen storage properties

, &
Pages 899-906 | Received 17 Mar 2021, Accepted 04 Apr 2021, Published online: 22 Apr 2021

References

  • Liu, J.; Rinzler, A.-G.; Dai, H.; Hafner, J.-H.; Bradley, R.-K.; Boul, P.-J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C.-B.; et al. Fullerene Pipes. Science 1998, 280, 1253–1256. DOI: 10.1126/science.280.5367.1253.
  • Pandurangappa, M.; Raghu, G.-K. Chemically Modified Carbon Nanotubes: Derivatization and Their Applications. In Carbon Nanotub. Appl. Electron Devices; Marulanda, J. M., Ed.; Intech: London, 2011; pp. 499–526. DOI: 10.5772/16635.
  • Hadavifar, M.; Bahramifar, N.; Younesi, H.; Li, Q. Adsorption of Mercury Ions from Synthetic and Real Wastewater Aqueous Solution by Functionalized Multi-Walled Carbon Nanotube with Both Amino and Thiolated Groups. Chem. Eng. J. 2014, 237, 217–228. DOI: 10.1016/j.cej.2013.10.014.
  • Lim, J.-K.; Yun, W.-S.; Yoon, M.-H.; Lee, S.-K.; Kim, C.-H.; Kim, K.; Kim, S.-K. Selective Thiolation of Single-Walled Carbon Nanotubes. Synth. Met. 2003, 139, 521–527. DOI: 10.1016/S0379-6779(03)00337-0.
  • Hong, C.-H.; You, Y.-Z.; Pan, C.-Y. Synthesis of Water-Soluble Multiwalled Carbon Nanotubes with Grafted Temperature-Responsive Shells by Surface RAFT Polymerization. Chem. Mater. 2005, 17, 2247–2254. DOI: 10.1021/cm048054l.
  • Jiang, G.; Wang, L.; Chen, C.; Dong, X.; Chen, T.; Yu, H. Study on Attachment of Highly Branched Molecules onto Multiwalled Carbon Nanotubes. Mater. Lett. 2005, 59, 2085–2089. DOI: 10.1016/j.matlet.2005.01.085.
  • Salehabadi, A.; Salavati-Niasari, M.; Ghiyasiyan-Arani, M. Self-Assembly of Hydrogen Storage Materials Based Multi-Walled Carbon Nanotubes (MWCNTs) and Dy3Fe5O12(DFO) Nanoparticles. J. Alloys Compd. 2018, 745, 789–797. DOI: 10.1016/j.jallcom.2018.02.242.
  • Masjedi-Arani, M.; Salavati-Niasari, M. Novel Synthesis of Zn2GeO4/graphene Nanocomposite For Enhanced Electrochemical Hydrogen Storage Performance. Int. J. Hydrog. Energy 2017, 42, 17184–17191. DOI: 10.1016/j.ijhydene.2017.05.118.
  • Beshkar, F.; Khojasteh, H.; Salavati-Niasari, M. Recyclable Magnetic Superhydrophobic Straw Soot Sponge for Highly Efficient Oil/Water Separation. J. Colloid Interface Sci. 2017, 497, 57–65. DOI: 10.1016/j.jcis.2017.02.016.
  • Ansari, F.; Sobhani, A.; Salavati-Niasari, M. Simple Sol-Gel Synthesis and Characterization of New CoTiO3/CoFe2O4 Nanocomposite by Using Liquid Glucose, Maltose and Starch as Fuel, Capping and Reducing Agents. J. Colloid Interface Sci. 2018, 514, 723–732. DOI: 10.1016/j.jcis.2017.12.083.
  • Mortazavi-Derazkola, S.; Salavati-Niasari, M.; Amiri, O.; Abbasi, A. Fabrication and Characterization of Fe3O4@SiO2@TiO2@Ho Nanostructures as a Novel and Highly Efficient Photocatalyst for Degradation of Organic Pollution. J. Energy Chem. 2017, 26, 17–23. DOI: 10.1016/j.jechem.2016.10.015.
  • Ahmadian-Fard-Fini, S.; Salavati-Niasari, M.; Ghanbari, D. Hydrothermal Green Synthesis of Magnetic Fe3O4-Carbon Dots by Lemon and Grape Fruit Extracts and as a Photoluminescence Sensor for Detecting of E. Coli Bacteria. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 203, 481–493. DOI: 10.1016/j.saa.2018.06.021.
  • Wang, Y.; Iqbal, Z.; Malhotra, S.-V. Functionalization of Carbon Nanotubes with Amines and Enzymes. Chem. Phys. Lett. 2005, 402, 96–101. DOI: 10.1016/j.cplett.2004.11.099.
  • Mormann, W.; Lu, Y.; Zou, X.; Berger, R. Modification and Grafting of Multi-Walled Carbon Nanotubes with Bisphenol-A-Polycarbonate. Macromol. Chem. Phys. 2008, 209, 2113–2121. DOI: 10.1002/macp.200800263.
  • Li, Z.; Chang, X.; Zou, X.; Zhu, X.; Nie, R.; Hu, Z.; Li, R. Chemically-Modified Activated Carbon with Ethylenediamine for Selective Solid-Phase Extraction and Preconcentration of Metal Ions. Anal. Chim. Acta. 2009, 632, 272–277. DOI: 10.1016/j.aca.2008.11.001.
  • Karousis, N.; Tagmatarchis, N.; Tasis, D. Current Progress on the Chemical Modification of Carbon Nanotubes. Chem. Rev. 2010, 110, 5366–5397. DOI: 10.1021/cr100018g.
  • Xue, W.; Li, P. Dielectrophoretic Deposition and Alignment of Carbon Nanotubes. In Carbon Nanotubes - Synthesis, Characterization, Applications. Yellampalli, D. S., Ed.; Intech: London, 2011; pp. 171–190.
  • Liu, Z.; Yuan, Z.; Zhou, W.; Peng, L.; Xu, Z. Co/Carbon-Nanotube Monometallic System: The Effects of Oxidation by Nitric Acid. Phys. Chem. Chem. Phys. 2001, 3, 2518–2521. DOI: 10.1039/b101950n.
  • Hiura, H.; Ebbesen, T.-W.; Tanigaki, K. Opening and Purification of Carbon Nanotubes in High Yields. Adv. Mater. 1995, 7, 275–276. DOI: 10.1002/adma.19950070304.
  • Zeynalov, E.; Wagner, M.; Friedrich, J.; Magerramova, M.; Salmanova, N.; Hidde, G.; Plath, A.-M. The Peculiar Behavior of Functionalized Carbon Nanotubes in Hydrocarbons and Polymeric Oxidation Environments. J. Adhes. Sci. Technol. 2017, 31, 988–1006. DOI: 10.1080/01694243.2016.1239304.
  • Colomer, J.-F.; Marega, R.; Traboulsi, H.; Meneghetti, M.; Tendeloo, G.-V.; Bonifazi, D. Microwave-Assisted Bromination of Double-Walled Carbon Nanotubes. Chem. Mater. 2009, 21, 4747–4749. DOI: 10.1021/cm902029m.
  • Çalışır, Ü.; Çiçek, B. Synthesis of Thiol-Glycol-Functionalized Carbon Nanotubes and Characterization with FTIR, TEM, TGA, and NMR Technics. Chem. Pap. 2020, 74, 3293–3302. DOI: 10.1007/s11696-020-01158-6.
  • Dyke, C.-A.; Tour, J.-M. Solvent-Free Functionalization of Carbon Nanotubes. J. Am. Chem. Soc. 2003, 125, 1156–1157. DOI: 10.1021/ja0289806.
  • Cheng, F.; Adronov, A. Suzuki Coupling Reactions for the Surface Functionalization of Single-Walled Carbon Nanotubes. Chem. Mater. 2006, 18, 5389–5391. DOI: 10.1021/cm061736j.
  • Wang, J.-X.; Hu, Z.-L.-Y.; Wei, B.; Bai, L. Microwave-Promoted Palladium Catalysed Heck Cross Coupling Reaction in Water. J. Chem. Res. (S) 2000, 2000, 484–485. DOI: 10.3184/030823400103165815.
  • Višić, B.; Cohen, H.; Popovitz-Biro, R.; Tenne, R.; Sokolov, V. I.; Abramova, N. V.; Buyanovskaya, A. G.; Dzvonkovskii, S. L.; Lependina, O. L. Direct Synthesis of Palladium Catalyst on Supporting WS2 Nanotubes and Its Reactivity in Cross-Coupling Reactions. Chem Asian J. 2015, 10, 2234–2239. DOI: 10.1002/asia.201500271.
  • Salvo, A.-M.-P. L.; Parola, V.; Liotta, L.-F.; Giacalone, F.; Gruttadauria, M. Highly Loaded Multi-Walled Carbon Nanotubes Non-Covalently Modified with a Bis-Imidazolium Salt and Their Use as Catalyst Supports. Chempluschem 2016, 81, 471–476. DOI: 10.1002/cplu.201600023.
  • Hajipour, A.-R.; Khorsandi, Z. Immobilized Pd on (S)-Methyl Histidinate-Modified Multi-Walled Carbon Nanotubes: A Powerful and Recyclable Catalyst for Mizoroki-Heck and Suzuki-Miyaura C-C Cross-Coupling Reactions in Green Solvents and under Mild Conditions. Appl. Organometal. Chem. 2016, 30, 256–261. DOI: 10.1002/aoc.3425.
  • Ben-Yahia, A.; Naas, M.; El Brahmi, N.; El Kazzouli, S.; Majoral, J.-P.; Essassi, E.-M.; Guillaumet, G. Microwave-Assisted Suzuki-Miyaura Cross-Coupling of Free (NH) 3-Bromoindazoles. COC. 2013, 17, 304–309. DOI: 10.2174/1385272811317030011.
  • Yang, F.; Chi, C.; Dong, S.; Wang, C.; Jia, X.; Ren, L.; Zhang, Y.; Zhang, L.; Li, Y. Pd/PdO Nanoparticles Supported on Carbon Nanotubes: A Highly Effective Catalyst for Promoting Suzuki Reaction in Water. Catal. Today 2015, 256, 186–192. DOI: 10.1016/j.cattod.2015.02.026.
  • Jawale, D.-V.; Gravel, E.; Boudet, C.; Shah, N.; Geertsen, V.; Li, H.; Namboothiri, I.-N.-N.; Doris, E. Room Temperature Suzuki Coupling of Aryl Iodides, Bromides, and Chlorides Using a Heterogeneous Carbon Nanotube-Palladium Nanohybrid Catalyst. Catal. Sci. Technol. 2015, 5, 2388–2392. DOI: 10.1039/C4CY01680G.
  • Yin, Y.-F.; Mays, T.; McEnaney, B. Molecular Simulations of Hydrogen Storage in Carbon Nanotube Arrays. Langmuir 2000, 16, 10521–10527. DOI: 10.1021/la000900t.
  • Froudakis, G.-E. Hydrogen Storage in Nanotubes & Nanostructures. Mater. Today 2011, 14, 324–328. DOI: 10.1016/S1369-7021(11)70162-6.
  • Sarıbuğa, Y.-E. Hidrojen Üretimi ve Depolanması Nanoteknoloji ile Artık Daha Kolay. Elektrik Port, May 16, 2018. https://www.elektrikport.com/teknik-kutuphane/hidrojen-uretimi-ve-depolanmasi-nanoteknoloji-ile-artik-daha-kolay/8457#ad-image-0. (accessed dec 12, 2019).
  • Nijkamp, M.-G.; Raaymakers, J.-E.-M.-J.; van Dillen, A.-J.; de Jong, K.-P. Hydrogen Storage Using Physisorption –Materials Demands. Appl. Phys. A Mater. Sci. Process 2001, 72, 619–623. DOI: 10.1007/s003390100847.
  • Liu, C.; Fan, Y.-Y.; Liu, M.; Cong, H.-T.; Cheng, H.-M.; Dresselhaus, M.-S. Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature. Science 1999, 286, 1127–1129. DOI: 10.1126/science.286.5442.1127.
  • Ritschel, M.; Uhlemann, M.; Gutfleisch, O.; Leonhardt, A.; Graff, A.; Täschner, C.; Fink, J. Hydrogen Storage in Different Carbon Nanostructures. Appl. Phys. Lett. 2002, 80, 2985–2987. DOI: 10.1063/1.1469680.
  • Kajiura, H.; Tsutsui, S.; Kadono, K.; Kakuta, M.; Ata, M.; Murakami, Y. Hydrogen Storage Capacity of Commercially Available Carbon Materials at Room Temperature. Appl. Phys. Lett. 2003, 82, 1105–1107. DOI: 10.1063/1.1555262.
  • Froudakis, G.-E. Hydrogen Interaction with Carbon Nanotubes: A Review of AB Initio Studies. J. Phys. Condens. Matter 2002, 14, 453–465. DOI: 10.1088/0953-8984/14/17/201.
  • Dillon, A.-C.; Gennett, J.-L.; Alleman, K.-M.; Jones, K.-M.; Parilla, P.-A.; Heben, M.-J. 2000 Carbon Nanotube Materials for Hydrogen Storage. Proceedings of the U.S. DOE Hydrogen Program Review, 421–440, National Renewable Energy Laboratory, California, U.S.A.
  • Hosseini, A.; Ghoreyshi, A.-A.; Pirzadeh, K.; Mohammadi, M. Enhancement of Hydrogen Storage on Multi-Walled Carbon Nanotube through KOH Activation and Nickel Nanoparticle Deposition. Trans. C Chem. Chem. Eng. 2017, 24, 1230–1240. DOI: 10.24200/SCI.2017.4107.
  • Chen, P.; Wu, X.; Lin, J.; Tan, K.-L. High H2 Uptake by Alkali-Doped Carbon Nanotubes under Ambient Pressure and Moderate Temperatures. Science 1999, 285, 91–93. DOI: 10.1126/science.285.5424.91.
  • Yang, R.-T. Hydrogen Storage by Alkali-Doped Carbon Nanotubes – Revisited. Carbon N. Y 2000, 38, 623–626. DOI: 10.1016/S0008-6223(99)00273-0.
  • Liu, C.; Chen, Y.; Wu, C.-Z.; Xu, S.-T.; Cheng, H.-M. Hydrogen Storage in Carbon Nanotubes Revisited. Carbon N. Y. 2010, 48, 452–455. DOI: 10.1016/j.carbon.2009.09.060.
  • Zhai, F.; Li, P.; Sun, A.; Wu, S.; Wan, Q.; Zhang, W.; Li, Y.; Cui, L.; Qu, X. Significantly Improved Dehydrogenation of LiAlH4 Destabilized by MnFe2O4 Nanoparticles. J. Phys. Chem. C. 2012, 116, 11939–11945. DOI: 10.1021/jp302721w.
  • Wan, Q.; Li, P.; Li, Z.; Zhai, F.; Qu, X.; Volinsky, A.-A. Improved Hydrogen Storage Performance of MgH2 − LiAlH4 Composite by Addition of MnFe2O4. J. Phys. Chem. 2013, 117, 26940–26947. DOI: 10.1021/jp410449q.
  • Ismail, M. Influence of Different Amounts of FeCl3 on Decomposition and Hydrogen Sorption Kinetics of MgH2. Int. J. Hydrogen Energy 2014, 39, 2567–2574. DOI: 10.1016/j.ijhydene.2013.11.084.
  • Ismail, M.; Juahir, N.; Mustafa, N.-S. Improved Hydrogen Storage Properties of MgH2 Co-Doped with FeCl3 and Carbon Nanotubes. J. Phys. Chem. C. 2014, 118, 18878–18883. DOI: 10.1021/jp5046436.
  • Hirscher, M.; Yartys, V.-A.; Baricco, M.; von Colbe, J.-B.; Blanchard, D.; Bowman, R.-C.; Broom, D.-P.; Buckley, C.-E.; Chang, F.; Chen, P. Materials for Hydrogen-Based Energy Storage – past, Recent Progress and Future Outlook. J. Alloys Compd. 2020, 827, 1–39. DOI: 10.1016/j.jallcom.2019.153548.
  • Froudakis, G.-E. Hydrogen and Oxygen Interaction with Carbon Nanotubes. In Encyclopedia of Nanoscience and Nanotechnology; Nalwa, H.S., Eds.; American Scientific Publishers: USA, 2004; Vol. 4, pp 1–11.
  • Cabria, I.; López, M.-J.; Alonso, J.-A. Interaction of Narrow Carbon Nanotubes with Nitronium Tetrafluoroborate Salts. J. Chem. Phys 2008, 128, 1–9. DOI: 10.1063/1.2931455.
  • An, K.-H.; Park, J.-S.; Yang, C.-M.; Jeong, S.-Y.; Lim, S.-C.; Kang, C.; Son, J.-H.; Jeong, M.-S.; Lee, Y.-H. A Diameter-Selective Attack of Metallic Carbon Nanotubes by Nitronium Ions. J. Am. Chem. Soc. 2005, 127, 5196–5203. DOI: 10.1021/ja0428199.
  • Zdanowska, S.; Pyzalska, M.; Drabowicz, J.; Kulawik, D.; Pavlyuk, V.; Girek, T.; Ciesielski, W. Carbon Nanotubes Functionalized by Salts Containing Stereogenic Heteroatoms as Electrodes in Their Battery Cells. Polish J. Chem. Technol. 2016, 18, 22–26. DOI: 10.1515/pjct-2016-0066.
  • Hou, P.-X.; Bai, S.; Yang, Q.-H.; Liu, C.; Cheng, H.-M. Multi-Step Purification of Carbon Nanotubes. Carbon N. Y. 2002, 40, 81–85. DOI: 10.1016/S0008-6223(01)00075-6.
  • Doğan, M.; Sabaz, P.; Bi̇Ci̇L, Z.; Koçer Kizilduman, B.;.; Turhan, Y. ; Activated Carbon Synthesis from Tangerine Peel and Its Use in Hydrogen Storage. J. Energy Inst. 2020, 93, 2176–2185. DOI: 10.1016/j.joei.2020.05.011.
  • Jiang, L.; Zhang, C.; Wei, J.; Tjiu, W.; Pan, J.; Chen, Y.; Liu, T. Surface Modifications of Halloysite Nanotubes with Superparamagnetic Fe3O4 Nanoparticles and Carbonaceous Layers for Efficient Adsorption of Dyes in Water Treatment. Chem. Res. Chin. Univ. 2014, 30, 971–977. DOI: 10.1007/s40242-014-4218-4.
  • Çiçek, B.; Çağlı, M.; Tülek, R.; Teke, A. Synthesis and Optical Characterization of Bipod Carbazole Derivatives. Heterocycl. Comm. 2020, 26, 148–156. DOI: 10.1515/hc-2020-0111.
  • Calisir, U.; Çiçek, B. Comparison of Classic and Microwave-Assisted Synthesis of Benzo-Thio Crown Ethers, and Investigation of Their Ion Pair Extractions. J. Mol. Struct. 2017, 1148, 505–511. DOI: 10.1016/j.molstruc.2017.07.081.
  • Ansari, F.; Sobhani, A.; Salavati-Niasari, M. Green Synthesis of Magnetic Chitosan Nanocomposites by a New Sol–Gel Auto-Combustion Method. Journal of Magnetism and Magnetic Materials, J. Magn. Magn. Mater. 2016, 410, 27–33. DOI: 10.1016/j.jmmm.2016.03.014.
  • Rashidi, A.-M.; Nouralishahi, A.; Khodadadi, A.-A.; Mortazavi, Y.; Karimi, A.; Kashefi, K. Modification of Single Wall Carbon Nanotubes (SWNT) for Hydrogen Storage. Int. J. Hydrog. Energy 2010, 35, 9489–9495. DOI: 10.1016/j.ijhydene.2010.03.038.
  • Lee, S.; Park, S. Influence of the Pore Size in Multi-Walled Carbon Nano Tubes on the Hydrogen Storage Behaviors. J. Solid State Chem. 2012, 194, 307–312. DOI: 10.1016/j.jssc.2012.05.027.
  • Barghi, S.-H.; Tsotsis, T.-T.; Sahimi, M. Chemisorption, Physisorption and Hysteresis during Hydrogen Storage in Carbon Nanotubes. Int. J. Hydrog. Energy 2014, 39, 1390–1397. DOI: 10.1016/j.ijhydene.2013.10.163.
  • Liu, H.; Li, Y. Modified Carbon Nanotubes for Hydrogen Storage at Moderate Pressure and Room Temperature, Fuller. Nanotub. Carbon Nanostructures 2020, 28, 663–670. DOI: 10.1080/1536383X.2020.1738396.
  • Wakayama, H. Hydrogen Storage of a Mechanically Milled Carbon Material Fabricated by Plasma Chemical Vapor Deposition. Fuller. Nanotub. Carbon Nanostructures 2020, 28, 841–845. DOI: 10.1080/1536383X.2020.1769608.
  • Zhao, T.; Li, G.; Liu, L.; Du, L.; Liu, Y.; Li, T. Hydrogen Storage Behavior of Amorphous Carbon Nanotubes at Low Pressure and Room Temperature. Fuller. Nanotub. Carbon Nanostructures 2011, 19, 677–683. DOI: 10.1080/1536383X.2010.515757.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.