4,816
Views
6
CrossRef citations to date
0
Altmetric
Review

A review on carbon nanotube-based composites for electrocatalyst applications

, &
Pages 1075-1083 | Received 20 Dec 2021, Accepted 09 Jan 2022, Published online: 24 Jan 2022

References

  • Qiu, H.; Yang, J. Structure and Properties of Carbon Nanotubes, Elsevier Inc., 2017; 2. DOI: 10.1016/B978-0-323-41481-4.00002-2.
  • Bepete, G.; Coleman, K. S. Carbon Nanotubes: Electronic Structure and Spectroscopy. Compr. Nanosci. Nanotechnol. 2019, 1–5, 205–218. DOI: 10.1016/B978-0-12-803581-8.11401-8.
  • Das, R.; Das Tuhi, S. Carbon Nanotubes Synthesis. In Carbon Nanotubes for Clean Water Book, 2018; Vol. 1, pp 27–84.
  • Dervishi, E.; Li, Z.; Xu, Y.; Saini, V.; Biris, A. R.; Lupu, D.; Biris, A. S. Carbon Nanotubes: Synthesis, Properties, and Applications. In 21st Century Surface Science – A Handbook, 2009; Vol. 27, pp 107–125. DOI: 10.1080/02726350902775962.
  • Venkataraman, A.; Amadi, E. V.; Chen, Y.; Papadopoulos, C. Carbon Nanotube Assembly and Integration for Applications. Nanoscale Res. Lett. 2019, 14. DOI: 10.1186/s11671-019-3046-3.
  • Liu, C. H.; Liu, Y. Y.; Zhang, Y. H.; Wei, R. R.; Zhang, H. L. Tandem Extraction Strategy for Separation of Metallic and Semiconducting SWCNTs Using Condensed Benzenoid Molecules: Effects of Molecular Morphology and Solvent. Phys. Chem. Chem. Phys. 2009, 11, 7257–7267. DOI: 10.1039/b901517e.
  • Zinola, C. F.; Martins, M. E.; Tejera, E. P.; Neves, N. P. Electrocatalysis: Fundamentals and Applications. Int. J. Electrochem. 2012, 2012, 1–2. DOI: 10.1155/2012/874687.
  • Salameh, Z. Energy Storage. In Renewable Energy System Design, Elsevier, 2014; Vol. chapter 4, pp 201–298.
  • Luo, C.; Xie, H.; Wang, Q.; Luo, G.; Liu, C. A Review of the Application and Performance of Carbon Nanotubes in Fuel Cells. J. Nanomater. 2015, 2015, 1–10. DOI: 10.1155/2015/560392.
  • Jha, N. R.; Bekyarova, P.; Tian, E.; Wang, X.; Itkis, F.; Haddon, M. E.; Robert, C. Functionalized Single-Walled Carbon Nanotube-Based Fuel Cell Benchmarked against US DOE 2017 Technical Targets. Sci. Rep. 2013, 3, 1–7. DOI: 10.1038/srep02257.
  • Girishkumar, G.; Rettker, M.; Underhile, R.; Binz, D.; Vinodgopal, K.; McGinn, P.; Kamat, P. Single-Wall Carbon Nanotube-Based Proton Exchange Membrane Assembly for Hydrogen Fuel Cells. Langmuir 2005, 21, 8487–8494. DOI: 10.1021/la051499j.
  • Zhao, Y.; Fan, L.; Ren, J.; Hong, B. Electrodeposition of Pt-Ru and Pt-Ru-Ni Nanoclusters on Multi-Walled Carbon Nanotubes for Direct Methanol Fuel Cell. Int. J. Hydrogen Energy 2014, 39, 4544–4557. DOI: 10.1016/j.ijhydene.2013.12.202.
  • Sheng, X.; Wouters, B.; Breugelmans, T.; Hubin, A.; Vankelecom, I. F. J.; Pescarmona, P. P. Cu/CuxO and Pt Nanoparticles Supported on Multi-Walled Carbon Nanotubes as Electrocatalysts for the Reduction of Nitrobenzene. Appl. Catal. B Environ. 2014, 147, 330–339. DOI: 10.1016/j.apcatb.2013.09.006.
  • Mehdinia, A.; Ziaei, E.; Jabbari, A. Multi-Walled Carbon Nanotube/SnO2 Nanocomposite: A Novel Anode Material for Microbial Fuel Cells. Electrochim. Acta 2014, 130, 512–518. DOI: 10.1016/j.electacta.2014.03.011.
  • Wang, C. T.; Chen, Y. M.; Qi, Z. Q.; Yang, Y. C. Carbon Nanotube Planted on Ni-Based Alloy in Microbial Fuel Cell. J. Nanomater. 2013, 2013, 1–5. vol. DOI: 10.1155/2013/435960.
  • Banerjee, J.; Dutta, K.; Rana, D. Carbon Nanomaterials in Renewable Energy Production and Storage Applications. Emerging Nanostructured Materials for Energy and Environmental Science, 2019; pp 51–104. DOI: 10.1007/978-3-030-04474-9_2.
  • Johansson, A. C.; Yang, R. B.; Haugshøj, K. B.; Larsen, J. V.; Christensen, L. H.; Thomsen, E. V. Ru-Decorated Pt Nanoparticles on N-Doped Multi-Walled Carbon Nanotubes by Atomic Layer Deposition for Direct Methanol Fuel Cells. Int. J. Hydrogen Energy 2013, 38, 11406–11414. DOI: 10.1016/j.ijhydene.2013.06.089.
  • Mu, Y.; Liang, H.; Hu, J.; Jiang, L.; Wan, L. Pt–Co Supported on Single-Walled Carbon Nanotubes as an Anode Catalyst for Direct Methanol Fuel Cells. Electrochim. Acta 2005, 109, 7276–7280. DOI: 10.1021/jp0555448.
  • Ghosh, S.; Raj, C. R. Facile in Situ Synthesis of Multiwall Carbon Nanotube Supported Flowerlike pt Nanostructures: An Efficient Electrocatalyst for Fuel Cell Application. J. Phys. Chem. C 2010, 114, 10843–10849. DOI: 10.1021/jp100551e.
  • Zhang, C.; Wang, Y. ‐C.; An, B.; Huang, R.; Wang, C.; Zhou, Z.; Lin, W. Networking Pyrolyzed Zeolitic Imidazolate Frameworks by Carbon Nanotubes Improves Conductivity and Enhances Oxygen-Reduction Performance in Polymer-Electrolyte-Membrane Fuel Cells. Adv. Mater. 2017, 29, 1604556. DOI: 10.1002/adma.201604556.
  • Van Pham, C.; Britton, B.; Böhm, T.; Holdcroft, S.; Thiele, S. Doped, Defect-Enriched Carbon Nanotubes as an Efficient Oxygen Reduction Catalyst for Anion Exchange Membrane Fuel Cells. Adv. Mater. Interfaces 2018, 5, 1800184–1800189. DOI: 10.1002/admi.201800184.
  • Mazurkiewicz-Pawlicka, M.; Malolepszy, A.; Mikolajczuk-Zychora, A.; Mierzwa, B.; Borodzinski, A.; Stobinski, L. Applied Surface Science a Simple Method for Enhancing the Catalytic Activity of Pd Deposited on Carbon Nanotubes Used in Direct Formic Acid Fuel Cells. Appl. Surf. Sci. 2019, 476, 806–814. DOI: 10.1016/j.apsusc.2019.01.114.
  • Hanif, S.; Iqbal, N.; Shi, X.; Noor, T.; Ali, G.; Kannan, A. M. NiCo e N-Doped Carbon Nanotubes Based Cathode Catalyst for Alkaline Membrane Fuel Cell. Renew. Energy 2020, 154, 508–516. DOI: 10.1016/j.renene.2020.03.060.
  • Zhao, N.; Ma, Z.; Song, H.; Xie, Y.; Zhang, M. Electrochimica Acta Enhancement of Bioelectricity Generation by Synergistic Modi fi Cation of Vertical Carbon Nanotubes/Polypyrrole for the Carbon fi Bers Anode in Microbial Fuel Cell. Electrochim. Acta 2019, 296, 69–74. DOI: 10.1016/j.electacta.2018.11.039.
  • Cai, T.; Huang, M.; Huang, Y.; Zheng, W. ScienceDirect Enhanced Performance of Microbial Fuel Cells by Electrospinning Carbon Nanofibers Hybrid Carbon Nanotubes Composite Anode. Int. J. Hydrogen Energy 2019, 44, 3088–3098. DOI: 10.1016/j.ijhydene.2018.11.205.
  • Bagher, M.; Salarizadeh, P.; Sei, M.; Mohammad, S. Ni/NiO Coated on Multi-Walled Carbon Nanotubes as a Promising Electrode for Methanol Electro-Oxidation Reaction in Direct Methanol Fuel Cell. Solid State Sci. 2019, 97. DOI: 10.1016/j.solidstatesciences.2019.106012.
  • Qiu, M.; Zhang, B.; Wu, H.; Cao, L.; He, X.; Li, Y.; Li, J.; Xu, M.; Jiang, Z. Preparation of Anion Exchange Membrane with Enhanced Conductivity and Alkaline Stability by Incorporating Ionic Liquid Modified Carbon Nanotubes. J. Membr. Sci. 2019, 573, 1–10. DOI: 10.1016/j.memsci.2018.11.070.
  • Devrim, Y.; Arıca, E. D. ScienceDirect Multi-Walled Carbon Nanotubes Decorated by Platinum Catalyst for High Temperature PEM Fuel Cell. Int. J. Hydrogen Energy 2019, 44, 18951–18966. DOI: 10.1016/j.ijhydene.2019.01.051.
  • Zhang, P.; Liu, J.; Qu, Y.; Zhang, J.; Zhong, Y.; Feng, Y. Enhanced Performance of Microbial Fuel Cell with a Bacteria/Multi-Walled Carbon Nanotube Hybrid Biofilm. J. Power Sources 2017, 361, 318–325. DOI: 10.1016/j.jpowsour.2017.06.069.
  • Hou, R. G.; Qi, G. S.; Nakhanivej, K.; Liu, P.; Li, H.; Xia, F.; Park, B. Y.; Seok, H. Hybridization Design of Materials and Devices for Flexible Electrochemical Energy Storage. Energy Storage Mater 2019, 19, 212–241. DOI: 10.1016/j.ensm.2019.03.002.
  • Fu, J.; Lee, D. U.; Hassan, F. M.; Yang, L.; Bai, Z.; Park, M. G.; Chen, Z. Flexible High-Energy Polymer-Electrolyte-Based Rechargeable Zinc-Air Batteries. Adv. Mater. 2015, 27, 5617–5622. DOI: 10.1002/adma.201502853.
  • Liu, T. X.; Liu, J. J.; Chang, Q. C.; Yin, Z. W.; Yang, Y. B.; Zhang, X. Y.; Bo, X. Ultrathin, Lightweight, and Wearable Li-O2 Battery with High Robustness and Gravimetric/Volumetric Energy Density. Small 2017, 13, 1602952–1602956. DOI: 10.1002/smll.201602952.
  • Yuan, W.; Zhang, Y.; Cheng, L.; Wu, H.; Zheng, L.; Zhao, D. The Applications of Carbon Nanotubes and Graphene in Advanced Rechargeable Lithium Batteries. J. Mater. Chem. A 2016, 4, 8932–8951. DOI: 10.1039/C6TA01546H.
  • Yang, J.; Xie, J.; Zhou, X.; Zou, Y.; Tang, J.; Wang, S.; Chen, F.; Wang, L. Functionalized n-Doped Porous Carbon Nanofiber Webs for a Lithium-Sulfur Battery with High Capacity and Rate Performance. J. Phys. Chem. C 2014, 118, 1800–1807. DOI: 10.1021/jp410385s.
  • Mi, R.; Liu, H.; Wang, H.; Wong, K.-W.; Mei, J.; Chen, Y.; Lau, W.-M.; Yan, H. Effects of Nitrogen-Doped Carbon Nanotubes on the Discharge Performance of Li-Air Batteries. Carbon N. Y. 2014, 67, 744–752. DOI: 10.1016/j.carbon.2013.10.066.
  • Li, Y.; Wang, J.; Li, X.; Liu, J.; Geng, D.; Yang, J.; Li, R.; Sun, X. Nitrogen-Doped Carbon Nanotubes as Cathode for Lithium-Airbatteries. Electrochem. Commun. 2011, 13, 668–672. DOI: 10.1016/j.elecom.2011.04.004.
  • Lim, H.-D.; Song, H.; Kim, J.; Gwon, H.; Bae, Y.; Park, K.-Y.; Hong, J.; Kim, H.; Kim, T.; Kim, Y. H.; Lepró.; et al. Superior Rechargeability and Efficiency of Lithium-Oxygen Batteries: Hierarchical Air Electrode Architecture Combined with a Soluble Catalyst. Angew. Chem. 2014, 126, 4007–4012. DOI: 10.1002/ange.201400711.
  • Xiao, Z.; Yang, Z.; Nie, H.; Lu, Y.; Yang, K.; Huang, S. Porous Carbon Nanotubes Etched by Water Steam for High-Rate Large-Capacity Lithium-Sulfur Batteries. J. Mater. Chem. A 2014, 2, 8683–8689. DOI: 10.1039/C4TA00630E.
  • Tian, F.; Zhong, S.; Nie, W.; Zeng, M.; Chen, B.; Liu, X. Multi-Walled Carbon Nanotubes Prepared with Low-Cost Fe-Al Bimetallic Catalysts for High-Rate Rechargeable Li-Ion Batteries. J. Solid State Electrochem. 2020, 24, 667–674. DOI: 10.1007/s10008-020-04502-8.
  • Sun, Q.; Liu, J.; Li, X.; Wang, B.; Yadegari, H.; Lushington, A.; Banis, M. N.; Zhao, Y.; Xiao, W.; Chen, N.; et al. Atomic Layer Deposited Non-Noble Metal Oxide Catalyst for Sodium–Air Batteries: Tuning the Morphologies and Compositions of Discharge Product. Adv. Funct. Mater. 2017, 27, 1606662., DOI: 10.1002/adfm.201606662.
  • Mazloum-Ardakani, M.; Sheikh-Mohseni, M. A. Carbon Nanotubes in Electrochemical Sensors. Carbon Nanotub. – Growth Appl. 2011. DOI: 10.5772/20604.
  • Mohajeri, S.; Dolati, A.; Rezaie, S. S. Electrochemical Sensors Based on Functionalized Carbon Nanotubes Modified with Platinum Nanoparticles for the Detection of Sulfide Ions in Aqueous Media. J. Chem. Sci. 2019, 131. DOI: 10.1007/s12039-019-1595-8.
  • Jeong, H.; Nguyen, D. M.; Lee, M. S.; Kim, H. G.; Ko, S. C.; Kwac, L. K. N-Doped Graphene-Carbon Nanotube Hybrid Networks Attaching with Gold Nanoparticles for Glucose Non-Enzymatic Sensor. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 90, 38–45. DOI: 10.1016/j.msec.2018.04.039.
  • Sun, X.; Chen, Y.; Xie, Y.; Wang, L.; Wang, Y.; Hu, X. Preparation of a Chemically Stable Metal-Organic Framework and Multi-Walled Carbon Nanotube Composite as a High-Performance Electrocatalyst for the Detection of Lead. Analyst 2020, 145, 1833–1840. DOI: 10.1039/c9an02299f.
  • Muthusankar, G.; Sethupathi, M.; Chen, S.-M.; Devi, R. K.; Vinoth, R.; Gopu, G.; Anandhan, N.; Sengottuvelan, N. N-Doped Carbon Quantum Dots @ Hexagonal Porous Copper Oxide Decorated Multiwall Carbon Nanotubes: A Hybrid Composite Material for an Efficient Ultra-Sensitive Determination of Caffeic Acid. Compos. Part B Eng. 2019, 174, 106973. DOI: 10.1016/j.compositesb.2019.106973.
  • Zhang, X.; Cui, H.; Gui, Y.; Tang, J. Mechanism and Application of Carbon Nanotube Sensors in SF6 Decomposed Production Detection: A Review. Nanoscale Res. Lett. 2017, 12. DOI: 10.1186/s11671-017-1945-8.
  • Luo, X.; Shi, W.; Yu, H.; Xie, Z.; Li, K.; Cui, Y. Wearable Carbon Nanotube-Based Biosensors on Gloves for Lactate. Wearable Carbon Nanotube-Based Biosensors on 2018, 18, 3398. DOI: 10.3390/s18103398.
  • Zhao, K.; Veksha, A.; Ge, L.; Lisak, G. Near Real-Time Analysis of Para-Cresol in Wastewater via a Laccase-Carbon Nanotubebased Biosensor. ECSN 2020, 128699. DOI: 10.1016/j.chemosphere.2020.128699.
  • Zhao, Y.; Zhang, J.; Wang, Y.; Chen, Z. A Highly Sensitive and Room Temperature CNTs/SnO2/CuO Sensor for H2S Gas Sensing Applications. 2020, 40. DOI: 10.1186/s11671-020-3265-7.
  • Wang, C.; Chan, C. K. Carbon Nanotube – Based Electrodes for Detection of Low – Ppb Level Hexavalent Chromium Using Amperometry. ECS J. Solid State Sci. Technol. 2016, 5, 3026–3031. DOI: 10.1149/2.0051608jss.
  • Khalaf, A. L.; Arasu, P. T.; Lim, H. N.; Paiman, S.; Yusof, N. A.; Mahdi, M. A.; Yaacob, M. H. Modified Plastic Optical Fiber with CNT and Graphene Oxide Nanostructured Coatings for Ethanol Liquid Sensing. Opt. Exp. 2017, 25, 196–204.
  • Shabbir, S. A.; Shamaila, S.; Bokhari, A.; Sabah, A. Nonenzymatic Glucose Sensor with High Performance Electrodeposited Nickel/Copper/Carbon Nanotubes Nanocomposite Electrode. J. Phys. Chem. Solids 2018. DOI: 10.1016/j.jpcs.2018.04.015.
  • Chen, S.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D.; Centi, G. Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst. Angew. Chem. Int. Ed. Engl. 2017, 56, 2699–2703. DOI: 10.1002/anie.201609533.
  • Yang, F.; Zhao, P.; Hua, X.; Luo, W.; Cheng, G.; Xing, W.; Chen, S. A Cobalt-Based Hybrid Electrocatalyst Derived from a Carbon Nanotube Inserted Metal-Organic Framework for Efficient Water-Splitting. J. Mater. Chem. A 2016, 4, 16057–16063. DOI: 10.1039/C6TA05829A.
  • Yang, D.; Hou, W.; Lu, Y.; Wang, X.; Zhang, W.; Chen, Y. Scalable Synthesis of Bimetallic Phosphide Decorated in Carbon Nanotube Network as Multifunctional Electrocatalyst for Water Splitting. ACS Sustain. Chem. Eng. 2019, 7, 13031–13040. DOI: 10.1021/acssuschemeng.9b02142.
  • Ghiamaty, Z.; Ghaffarinejad, A.; Faryadras, M.; Abdolmaleki, A.; Kazemi, H. Synthesis of Palladium–Carbon Nanotube–Metal Organic Framework Composite and Its Application as Electrocatalyst for Hydrogen Production. J. Nanostruct. Chem. 2016, 6, 299–308. DOI: 10.1007/s40097-016-0203-4.
  • Viswanathan, B. In Electro-Catalytic Reduction of Carbon Dioxide, Elsevier B.V., 2013; pp 275–295. DOI: 10.1016/B978-0-444-53882-6.00011-5.
  • Li, Q.; Zhang, X.; Zhou, X.; Li, Q.; Wang, H.; Yi, J.; Liu, Y.; Zhang, J. Simply and Effectively Electrodepositing Bi-MWCNT-COOH Composite on Cu Electrode for Efficient Electrocatalytic CO2 Reduction to Produce HCOOH. J. CO2 Util. 2020, 37, 106–112. DOI: 10.1016/j.jcou.2019.12.003.
  • Zhang, X.; Fu, J.; Liu, Y.; Zhou, X.; Qiao, J. Bismuth Anchored on MWCNTs with Controlled Ultrafine Nanosize Enables High-Efficient Electrochemical Reduction of Carbon Dioxide to Formate Fuel. ACS Sustain. Chem. Eng. 2020, 6–11. DOI: 10.1021/acssuschemeng.0c00099.
  • Latiff, N. M.; Fu, X.; Mohamed, D. K.; Veksha, A.; Handayani, M.; Lisak, G. Carbon Based Copper(II) Phthalocyanine Catalysts for Electrochemical CO2 Reduction: Effect of Carbon Support on Electrocatalytic Activity. Carbon N. Y. 2020, 168, 245–253. DOI: 10.1016/j.carbon.2020.06.066.
  • Pan, F.; Zhao, H.; Deng, W.; Feng, X.; Li, Y. A Novel N,Fe-Decorated Carbon Nanotube/Carbon Nanosheet Architecture for Efficient CO2 Reduction. Electrochim. Acta 2018, DOI: 10.1016/j.electacta.2018.04.047.
  • Jiang, K. B.; Akey, S.; Xia, A. J.; Hu, C.; Liang, Y.; Schaak, W.; Stavitski, D.; Nørskov, E.; Siahrostami, J. K.; Haotian, S. W. Highly Selective and Active CO2 Reduction Electro-Catalysts Based on Cobalt Phthalocyanine/Carbon Nanotube Hybrid Structures. Nat. Commun. 2017, 1–8. DOI: 10.1038/ncomms14675.
  • Zhang, Z.; Yang, Y.; Li, W.; Zhang, W.; Liu, M.; Weng, Z.; Huo, S.; Zhang, J. Boosting Carbon Monoxide Production during CO2 Reduction Reaction via Cu-Sb2O3 Interface Cooperation. J. Colloid Interface Sci. 2021, 601, 661–668. DOI: 10.1016/j.jcis.2021.05.118.