112
Views
0
CrossRef citations to date
0
Altmetric
Articles

Study on the nano and physicochemical properties of soot particles produced by kerosene combustion

, , , &
Pages 1102-1108 | Received 11 Apr 2022, Accepted 27 Apr 2022, Published online: 09 May 2022

References

  • Chen, X.; Kang, S.; Yang, J. Investigation of Distribution, Transportation, and Impact Factors of Atmospheric Black Carbon in the Arctic Region Based on a Regional Climate-Chemistry Model. Environ. Pollut. 2020, 257, 113127.DOI: 10.6/j.envpol.2019.113127.
  • Lu, Z.; Streets, D. G.; Winijkul, E.; Yan, F.; Chen, Y.; Bond, T. C.; Feng, Y.; Dubey, M. K.; Liu, S.; Pinto, J. P.; Carmichael, G. R. Light Absorption Properties and Radiative Effects of Primary Organic Aerosol Emissions. Environ. Sci. Technol. 2015, 49, 4868–4877. DOI: 10.1021/acs.est.5b00211.
  • Shiraiwa, M.; Selzle, K.; Pöschl, U. Hazardous Components and Health Effects of Atmospheric Aerosol Particles: Reactive Oxygen Species, Soot, Polycyclic Aromatic Compounds and Allergenic Proteins. Free Radic. Res. 2012, 46, 927–939. DOI: 10.3109/10715762.2012.663084.
  • Feng, Q.; Jalali, A.; Fincham, A. M.; Wang, Y. L.; Tsotsis, T. T.; Egolfopoulos, F. N. Soot Formation in Flames of Model Biodiesel Fuels. Combust. Flame 2012, 159, 1876–1893. DOI: 10.1016/j.combustflame.2012.01.003.
  • Wang, Y.; Chung, S. H. Soot Formation in Laminar Counterflow Flames. Prog. Energy Combust. 2019, 74, 152–238. DOI: 10.1016/j.pecs.2019.05.003.
  • Merchan-Merchan, W.; Abdihamzehkolaei, A.; Merchan-Breuer, D. A. Formation and Evolution of Carbon Particles in Coflow Diffusion Air Flames of Vaporized Biodiesel, Diesel and Biodiesel-Diesel Blends. Fuel 2018, 226, 263–277. DOI: 10.6/j.fuel.2018.02.183.
  • Tang, Q.; Ge, B.; Ni, Q.; Nie, B.; You, X. Soot Formation Characteristics of N-Heptane/Toluene Mixtures in Laminar Premixed Burner-Stabilized Stagnation Flames. Combust. Flame 2018, 187, 239–246. DOI: 10.1016/j.combustflame.2017.08.022.
  • Daniels, P. H. Carbon Formation in Premixed Flames. Combust. Flame 1960, 4, 45–49. 2180(60)80005-3. DOI: 10.1016/S0010-.
  • Wang, Y.; Makwana, A.; Iyer, S.; Linevsky, M.; Santoro, R. J.; Litzinger, T. A.; O’Connor, J. Effect of Fuel Composition on Soot and Aromatic Species Distributions in Laminar, Co-Flow Flames. Part 1. Non-Premixed Fuel. Combust. Flame 2018, 189, 443–455. DOI: 10.1016/j.combustflame.2017.08.011.
  • Russo, C.; Alfe, M.; Rouzaud, J. N.; Stanzione, F.; Tregrossi, A.; Ciajolo, A. Probing Structures of Soot Formed in Premixed Flames of Methane, Ethylene and Benzene. Proc. Combust. Inst. 2013, 34, 1885–1892. DOI: 10.1016/j.proci.2012.06.127.
  • Bockhorn, H.; D'Anna, A.; Sarofim, A. F. Combustion Generated Fine Carbonaceous Particles; Karlsruhe University Press: Karlsruhe, 2007.
  • Cain, J. P.; Gassman, P. L.; Wang, H.; Laskin, A. Micro-FTIR Study of Soot Chemical Composition—Evidence of Aliphatic Hydrocarbons on Nascent Soot Surfaces. Phys. Chem. Chem. Phys. 2010, 12, 5206–5218. DOI: 10.1039/b924344e.
  • Abdalla, A. O. G.; Liu, D.; Zhang, L.; Zhao, X.; Jiang, B.; He, X. Nanoscale Inspection on Carbon Particles from Commercial RP-3 Kerosene Combustion with Different Dilutions. Fullerenes Nanotubes Carbon Nanostruct. 2020, 28, 959–972. DOI: 10.1080/1536383X.2020.1786817.
  • Wal, R. L. V.; Tomasek, A. J. Soot Nanostructure: Dependence upon Synthesis Conditions. Combust. Flame 2004, 136, 129–140. DOI: 10.1016/j.combustflame.2003.09.008.
  • Wal, R.; Tomasek, A. J. Soot Oxidation: Dependence upon Initial Nanostructure. Combust. Flame 2003, 134, 1–9. DOI: 10.1016/S0010-2180(03)00084-1.
  • Wal, R.; Yezerets, A.; Currier, N. W.; Kim, D. H.; Chong, M. W. HRTEM Study of Diesel Soot Collected from Diesel Particulate Filters. Carbon 2007, 45, 70–77. DOI: 10.1016/j.carbon.2006.08.005.
  • Chu, H.; Ya, Y.; Nie, X.; Qiao, F.; E, J. Effects of Adding Cyclohexane, N-Hexane, Ethanol, and 2,5-Dimethylfuran to Fuel on Soot Formation in Laminar Coflow N-Heptane/Iso-Octane Diffusion Flame. Combust. Flame 2021, 225, 120–135. DOI: 10.1016/j.combustflame.2020.10.030.
  • Qi, D.; Ying, Y.; Liu, D. Micro- and Nano-Structure Evolution of Soot from Isooctane and 2,5-Dimethylfuran Flames in Photocatalytic Degradation. Fullerenes Nanotubes Carbon Nanostruct. 2019, 27, 978–993. DOI: 10.1080/1536383X.2019.1680545.
  • Okada, S.; Sugime, H.; Hasegawa, K.; Osawa, T.; Kataoka, S.; Sugiura, H.; Noda, S. Flame-Assisted Chemical Vapor Deposition for Continuous Gas-Phase Synthesis of 1-nm-Diameter Single-Wall Carbon Nanotube. Carbon 2018, 138, 1–7. DOI: 10.1016/j.carbon.2018.05.060.
  • Padilla, O.; Gallego, J.; Santamaría, A. Using Benzene as Growth Precursor for the Carbon Nanostructure Synthesis in an Inverse Diffusion Flame Reactor. Diam. Relat. Mater. 2018, 86, 128–138. DOI: 10.1016/j.diamond.2018.04.024.
  • Minutolo, P.; Commodo, M.; Santamaria, A.; De Falco, G.; D’Anna, A. Characterization of Flame-Generated 2-d Carbon Nano-Disks. Carbon 2014, 68, 138–148. DOI: 10.1016/j.carbon.2013.10.073.
  • Han, W.; Chen, D.; Li, Q.; Liu, W.; Chu, H.; Rui, X. Ultrafast Flame Growth of Carbon Nanotubes for High-Rate Sodium Storage. J. Power Sources 2019, 439, 227072. DOI: 10.1016/j.jpowsour.2019.227072.
  • Rud, A. D.; Kuskova, N. I.; Ivaschuk, L. I.; Zelinskaya, G. M.; Biliy, N. M. Structure State of Carbon Nanomaterials Produced by High-Energy Electric Discharge Techniques. Fullerenes Nanotubes Carbon Nanostruct. 2010, 19, 120–126. DOI: 10.1080/1536383X.2010.490129.
  • Jovanovic, T.; Koruga, D. J.; Jovancicevic, B. Isolation and Characterization of the Higher Fullerenes from Carbon Soot. Fullerenes Nanotubes Carbon Nanostruct. 2011, 19, 309–316. 831003721872. DOI: 10.1080/15363.
  • Burlakova, V. E.; Novikova, A. A. Extracting of Fullerene-Like Nanoparticles from Environmental Soots. Fullerenes Nanotubes Carbon Nanostruct. 2017, 25, 483–487. DOI: 10.1080/1536383X.2017.1339274.
  • Lou, C.; Chen, C.; Sun, Y.; Zhou, H. Review of Soot Measurement in Hydrocarbon-Air Flames. Sci. China Technol. Sci. 2010, 53, 2129–2214. DOI: 10.1007/s11431-010-3212-4.
  • Randy, L.; Vander Wal, T. M.; Ticich.; A. B.; Stephens. Can Soot Primary Particle Size Be Determined Using Laser Induced Incandescence? Combust. Flame 1999, 116, 291–296. DOI: 10.1016/S0010-2180(98)00040-6.
  • Weinong, G.; Kamiya, K.; Toyama, J.; Shaddix, C. R.; Smyth, K. C. Laser-Induced Incandescence Measurements of Soot Production in Steady and Flickering Methane, Propane, and Ethylene Diffusion Flames. Combust. Flame 1996, 107, 418–452. DOI: 10.1016/S0010-2180(96)00107-1.
  • Maricq, M. M.; Harris, S. J.; Szente, J. J. Soot Size Distributions in Rich Premixed Ethylene Flames. Combust. Flame 2003, 132, 328–342. DOI: 10.1016/S0010-2180(02)00502-3.
  • Abid, A. D.; Heinz, N.; Tolmachoff, E. D.; Phares, D. J.; Campbell, C. S.; Hai, W. On Evolution of Particle Size Distribution Functions of Incipient Soot in Premixed Ethylene–Oxygen–Argon Flames. Combust. Flame 2008, 154, 775–788. DOI: 10.1016/j.combustflame.2008.06.009.
  • Sharma, H. N.; Pahalagedara, L.; Joshi, A.; Suib, S. L.; Mhadeshwar, A. B. Experimental Study of Carbon Black and Diesel Engine Soot Oxidation Kinetics Using Thermogravimetric Analysis. Energy Fuels 2012, 26, 5613–5625. DOI: 10.1021/ef3009025.
  • Yehliu, K.; Vander Wal, R. L.; Armas, O.; Boehman, A. L. Impact of Fuel Formulation on the Nanostructure and Reactivity of Diesel Soot. Combust. Flame 2012, 159, 3597–3606. DOI: 10.1016/j.combustflame.2012.07.004.
  • Raj, A.; Yang, S. Y.; Cha, D.; Tayouo, R.; Chung, S. H. Structural Effects on the Oxidation of Soot Particles by O2: Experimental and Theoretical Study. Combust. Flame 2013, 160, 1812–1826. DOI: 10.1016/j.combustflame.2013.03.010.
  • McEnally, C. S.; Köylü, Ü. Ö.; Pfefferle, L. D.; Rosner, D. E. Soot Volume Fraction and Temperature Measurements in Laminar Nonpremixed Flames Using Thermocouples. Combust. Flame 1997, 109, 701–720. DOI: 10.1016/S0010-2180(97)00054-0.
  • Hai, W. Formation of Nascent Soot and Other Condensed-Phase Materials in Flames. Proc. Combust. Inst. 2011, 33, 41–67. DOI: 10.1016/j.proci.2010.09.009.
  • Vander Wal, R. L. Soot Precursor Material: Visualization via Simultaneous lIF-LII and Characterization via TEM. Symp. (Int.) Combust. 1996, 26, 2269–2275. DOI: 10.1016/s0082-0784(96)80054-3.
  • Chieu, T. C.; Dresselhaus, M. S.; Endo, M. Raman Studies of Benzene-Derived Graphite Fibers. Phys. Rev. B 1982, 26, 5867–5877. 5867. DOI: 10.1103/PhysRevB.26.
  • Rodríguez-Fernández, J.; Oliva, F.; Vazquez, R. A. Characterization of the Diesel Soot Oxidation Process through an Optimized Thermogravimetric Method. Energy Fuels 2011, 25, 2039–2048. DOI: 10.1021/ef200194m.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.