147
Views
0
CrossRef citations to date
0
Altmetric
Articles

Methylene blue degradation photocatalytic activity of C60 fullerene nanowhisker–ZnS:Mn-glycine composites

, &
Pages 1116-1122 | Received 27 Mar 2022, Accepted 06 May 2022, Published online: 18 May 2022

References

  • Kim, J. Y.; Voznyy, O.; Zhitomirsky, D.; Sargent, E. H. 25th Anniversary Article: Colloidal Quantum Dot Materials and Devices: A Quarter-Century of advances . Adv. Mater. 2013, 25, 4986–5010. DOI: 10.1002/adma.201301947.
  • Choi, C. L.; Alivisatos, A. P. From Artificial Atoms to Nanocrystal Molecules: Preparation and Properties of More Complex Nanostructures. Annu. Rev. Phys. Chem. 2010, 61, 369–389. DOI: 10.1146/annurev.physchem.012809.103311.
  • Park, S.; Song, B.; Kong, H. Y.; Byun, J.; Hwang, C. S. Biological Toxicities and Aggregation Effects of L-Glycine and L-Alanine Capped ZnS:Mn Nanocrystals in Aqueous Solution. Bull. Korean Chem. Soc. 2014, 35, 1169–1176. 2014.35.4.1169. DOI: 10.5012/bkcs.
  • Hwang, J. M.; Oh, M. O.; Kim, I.; Lee, J. K.; Ha, C. S. Preparation and Characterization of ZnS Based Nano-Crystalline Particles for Polymer Light-Emitting Diodes. Curr. Appl. Phys. 2005, 5, 31–34. DOI: 10.1016/j.cap.2003.11.075.
  • Wu, M.; Wei, Z.; Zhao, W.; Wang, X.; Jiang, J. Optical and Magnetic Properties of Ni Doped ZnS Diluted Magnetic Semiconductors Synthesized by Hydrothermal Method. J. Nanomater. 2017, 2017, 1603450. DOI: 10.1155/2017/1603450.
  • Yang, R. D.; Tripathy, S.; Tay, F. E. H.; Gan, L. M.; Chua, S. J. Photoluminescence and Micro-Raman Scattering in Mn-Doped ZnS Nanocrystalline Semiconductors. J. Vac. Sci. Technol. B 2003, 21, 984–988. DOI: 10.1116/1.1568350.
  • Li, J.; Ko, W. B. Synthesis of ZnS:Mn-Gly-C60 Nanocomposites and Their Photocatalytic Activity of Brilliant Green. Elas. Compos. 2018, 53, 75–79. DOI: 10.7473/EC.2018.53.2.75.
  • Murugadoss, G.; Rajamannan, B.; Ramasamy, V. Synthesis, Characterization and Optical Properties of Water-Soluble ZnS:Mn2+ Nanoparticles. J. Lumin. 2010, 130, 2032–2039. DOI: 10.1016/j.jlumin.2010.05.022.
  • Balaz, P.; Boldizarova, E.; Godocikova, E.; Briancin, J. Mechanochemical Route for Sulphide Nanoparticles Preparation. Mater. Lett. 2003, 57, 1585–1589. DOI: 10.1016/S0167-577X(02)01037-6.
  • Souici, A. H.; Keghouche, N.; Delaire, J. A.; Remita, H.; Mostafavi, M. Radiolytic Synthesis and Optical Properties of Ultra-Small Stabilized ZnS Nanoparticles. Chem. Phys. Lett. 2006, 422, 25–29. DOI: 10.1016/j.cplett.2006.02.013.
  • Kara, N.; Raj, S.; Singh, F. Properties of Nanocrystalline ZnS:Mn. J. Cryst. Growth 2004, 268, 585–589. DOI: 10.1016/j.jcrysgro.2004.04.
  • Konishi, M.; Isobe, T.; Senna, M. Enhancement of Photoluminescence of ZnS:Mn Nanocrystals by Hybridizing with Polymerized Acrylic Acid. J. Lumin. 2001, 93, 1–8. DOI: 10.1016/S0022-2313(01)00174-0.
  • Bhattacharjee, B.; Ganguli, D.; Iakoubovskii, K.; Stesmans, A.; Chaudhuri, S. Synthesis and Characterization of Sol-Gel Derived ZnS:Mn2+ Nanocrystallites Embedded in a Silica Matrix. Bull. Mater. Sci. 2002, 25, 175–180. DOI: 10.1007/BF02711150.
  • Ko, J. W.; Ko, W. B. Catalytic Activity Fors Reduction of 4-Nitrophenol with [C60]Fullerene Nanowhisker-Silver Nanoparticle Composites. Mater. Trans. 2016, 57, 2122–2126. DOI: 10.2320/matertrans.M20162141.
  • Nakamura, K.; Miyazawa, K.; Kuwasaki, Y.; Obayashi, A.; Kuwabara, M. Structural Characterization of C60 Nanotubes by Raman and TEM Analyses. J. Mater. Res. 2002, 17, 83–88. DOI: 10.14723/tmrsj.32.1015.
  • Wakahara, T.; Miyazawa, K.; Ito, O.; Tanigaki, N. Preparation of Composite Films of a Conjugated Polymer and C60NWs and Their Photovoltaic Application. J. Nanomater. 2016, 20162016, 1–5. DOI: 10.1155/2016/2895850.
  • Miyazawa, K. Synthesis of Fullerene Nanowhiskers Using the Liquid-Liquid Interfacial Precipitation Method and Their Mechanical, Electrical and Superconducting Properties. Sci. Technol. Adv. Mater. 2015, 16, 013502. DOI: 10.1088/1468-6996/16/1/013502.
  • Kato, R.; Miyazawa, K. Raman Laser Polymerization of C60 Nanowhiskers. J. Nanomater. 2012, 2012, 101243. DOI: 10.1155/2012/101243.
  • Ko, J. W.; Ko, W. B. Preparation of [C60]Fullerene Nanowhisker-Cadmium Sulfide Nanoparticle Composite and Its Photocatalytic Activity for Degradation of Rhodamine B. Fuller. Nanotub. Carbon Nanostruct. 2019, 27, 895–898. DOI: 10.1080/1536383X.2019.1657416.
  • Ko, J. W.; Li, J.; Ko, W. B. Preparation of [C60]Fullerene Nanowhisker-Gold Nanoparticle Composites and Reduction of 4-Nitrophenol through Catalysis. Nanomater. Nanotechnol. 2015, 5, 1–8. DOI: 10.5772/6208610.
  • Wang, B.; Gao, X.; Piao, G. Preparation of Polyaniline-Doped Fullerene Whiskers. J. Nanomater. 2013, 2013, 1–4. 646040. DOI: 10.1155/2013/867934.
  • Wakahara, T.; Sathish, M.; Miyazawa, K.; Hu, C.; Tateyama, Y.; Nemoto, Y.; Sasaki, T.; Ito, O. Preparation and Optical Properties of Fullerene/Ferrocene Hybrid Hexagonal Nanosheets and Large-Scale Production of Fullerene Hexagonal Nanosheets. J. Am. Chem. Soc. 2009, 131, 9940–9944. DOI: 10.1021/ja901032b.
  • Sim, Y.; Park, J.; Hwang, C. S. Aggregation and Photocatalytic Effects of the Cysteamine Capped ZnS:Mn Nanocrystals Prepared at Various pH Conditions. J. Nanosci. Nanotechnol. 2016, 16, 10935–10943. DOI: 10.1166/jnn.2016.13267.
  • Torres-Martínez, C. L.; Kho, R.; Mian, O. I.; Mehra, R. K. Efficient Photocatalytic Degradation of Environmental Pollutants with Mass-Produced ZnS Nanocrystals. J. Colloid Interface Sci. 2001, 240, 525–532. DOI: 10.1006/jcis.2001.7684.
  • Azzam, E. M.; Fathy, N. A.; El-khouly, S. M.; Sami, R. M. Enhancement the Photocatalytic Degradation of Methylene Blue Dye Using Fabricated CNTs/TiO2/AgNPs/Surfactant Nanocomposites. J. Water Process. Eng. 2019, 28, 311–321. DOI: 10.1016/j.jwpe.2019.02.016.
  • Fathy, N. A.; El-khouly, S. M.; Aboelenin, R. M. M. Carbon Xerogel/Carbon Nanotubes Nanohybrid Doped with Ti for Removal of Methylene Blue Dye. Egypt. J. Chem. 2019, 62, 2277–2288. DOI: 10.21608/ejchem.2019.12870.1803.
  • Ko, J. W.; Son, Y. A.; Ko, W. B. Synthesis of Zinc Oxide Nanoparticle-(C60) Fullerene Nanowhisker Composite for Catalytic Degradation of Methyl Orange under Ultraviolet and Ultrasonic Irradiation. Elas. Compos. 2020, 55, 321–328. DOI: 10.7473/EC.2020.55.4.321.
  • Ko, J. W.; Ko, W. B. Synthesis of g-C3N4-C60 Fullerene Nanowhisker Composites and Its Photocatalytic Activity for Degradation of Rhodamine B. Fuller. Nanotub. Carbon Nanostruct. [Online early access]. DOI: 10.1080/1536383X.2021.2008368. Published Online: Nov 30, 2021.
  • International Union of Crystallography in International Tables for X-Ray Crystallography, Part III. Dordrecht, Netherlands,1985; p 318.
  • Cai, Q.; Hu, Z.; Zhang, Q.; Li, B.; Shen, Z. Fullerene(C60)/CdS Nanocomposite with Enhanced Photocatalytic Activity and Stability. Appl. Surf. Sci. 2017, 403, 151–158. DOI: 10.1016/j.apsusc.2017.01.135.
  • Kole, A. K.; Kumbhaka, P. Cubic-to-Hexagonal Phase Transition and Optical Properties of Chemically Synthesized ZnS Nanocrystals. Results Phys. 2012, 2, 150–155. DOI: 10.1016/j.rinp.2012.09.010.
  • Schneider, J.; Kirby, R. D. Ramam Scattering from ZnS Polytypes. Phys. Rev. B 1972, 6, 1290–1293. DOI: 10.1103/PhysRevB.6.1290.
  • Saleh, T. A.; Gupta, V. K. Photo-Catalyzed Degradation of Hazardous Dye Methyl Orange by Use of a Composite Catalyst Consisting of Multi-Walled Carbon Nanotubes and Titanium Dioxide. J. Colloid Interface Sci. 2012, 371, 101–106. DOI: 10.1016/j.jcis.2011.12.038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.