468
Views
0
CrossRef citations to date
0
Altmetric
Articles

Carbon-coated sodium vanadium phosphate for high-performance sodium-ion batteries

&
Pages 1142-1147 | Received 17 May 2022, Accepted 18 May 2022, Published online: 29 May 2022

References

  • Liang, X.; Pang, Q.; Kochetkov, I. R.; Sempere, M. S.; Huang, H.; Sun, X.; Nazar, L. F. A Facile Surface Chemistry Route to a Stabilized Lithium Metal Anode. Nat Energy 2017, 2, 17119. DOI: 10.1038/nenergy.2017.119.
  • Manthiram, A.; Fu, Y.; Su, Y. Challenges and Prospects of Lithium-Sulfur Batteries. Acc Chem. Res. 2013, 46, 1125–1134. DOI: 10.1021/ar300179v.
  • Zhang, D.; Zhang, K.; Yao, Y.; Liang, F.; Qu, T.; Ma, W.; Yang, B.; Dai, Y.; Lei, Y. Intercalation and Exfoliation Syntheses of High Specific Surface Area Graphene and FeC2O4/Graphene Composite for Anode Material of Lithium Ion Battery. Fuller. Nanotub. Car. N 2019, 27, 746–754. DOI: 10.1080/1536383X.2019.1635586.
  • Han, J. T.; Jiao, Q. L. Binder-Free Electrodes for Advanced Sodium-Ion Batteries. Adv. Mater. 2020, 32, 1806304. DOI: 10.1002/adma.201806304.
  • Deng, J.; Luo, W.-B.; Chou, S.-L.; Liu, H.-K.; Dou, S.-X. Sodium-Ion Batteries: From Academic Research to Practical Commercialization. Adv. Energy Mater. 2018, 8, 1701428. DOI: 10.1002/aenm.201701428.
  • Xu, Z.-L.; Yoon, G.; Park, K.-Y.; Park, H.; Tamwattana, O.; Joo Kim, S.; Seong, W. M.; Kang, K. Tailoring Sodium Intercalation in Graphite for High Energy and Power Sodium Ion Batteries. Nat. Commun. 2019, 10, 2598. DOI: 10.1038/s41467-019-10551-z.
  • Nayak, P. K.; Yang, L.; Brehm, W.; Adelhelm, P. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. Angew. Chem. Int. Ed. Engl. 2018, 57, 102–120. DOI: 10.1002/anie.201703772.
  • Arie, A. A.; Kristianto, H.; Muljana, H.; Stievano, L. L. Rambutan Peel Based Hard Carbons as Anode Materials for Sodium Ion Battery. Fuller. Nanotub. Car. N 2019, 27, 953–960. DOI: 10.1080/1536383X.2019.1671372.
  • Li, Y.; Yuan, Y. F.; Bai, Y.; Liu, Y. C.; Wang, Z. H.; Li, L. M.; Wu, F.; Amine, K.; Wu, C.; Lu, J. Insights into the Na+ Storage Mechanism of Phosphorus-Functionalized Hard Carbon as Ultrahigh Capacity Anodes. Adv. Energy Mater. 2018, 8, 1702781. DOI: 10.1002/aenm.201702781.
  • Liu, Q.; Hu, Z.; Li, W.; Zou, C.; Jin, H.; Wang, S.; Chou, S.; Dou, S.-X. Sodium Transition Metal Oxides: The Preferred Cathode Choice for Future Sodium-Ion Batteries? Energy Environ. Sci. 2021, 14, 158–179. DOI: 10.1039/D0EE02997A.
  • You, Y.; Manthiram, A. Progress in High-Voltage Cathode Materials for Rechargeable Sodium-Ion Batteries. Adv. Energy Mater. 2018, 8, 1701785. DOI: 10.1002/aenm.201701785.
  • Jin, T.; Li, H.; Zhu, K.; Wang, P. F.; Liu, P.; Jiao, L. Polyanion-Type Cathode Materials for Sodium-Ion Batteries. Chem. Soc. Rev. 2020, 49, 2342–2377. DOI: 10.1039/c9cs00846b.
  • Niu, Y. B.; Guo, Y. J.; Yin, Y. X.; Zhang, S. Y.; Wang, T.; Wang, P.; Xin, S.; Guo, Y. G. High-Efficiency Cathode Sodium Compensation for Sodium-Ion Batteries. Adv. Mater. 2020, 32, 2001419. DOI: 10.1002/adma.202001419.
  • Li, S.; Dong, Y.; Xu, L.; Xu, X.; He, L.; Mai, L. Effect of Carbon Matrix Dimensions on the Electrochemical Properties of Na3V2(PO4)3 Nanograins for High-Performance Symmetric Sodium-Ion Batteries. Adv. Mater. 2014, 26, 3545–3553. DOI: 10.1002/adma.201305522.
  • Zheng, Q.; Yi, H.; Li, X.; Zhang, H. Progress and Prospect for NASICON-Type Na3V2(PO4)3 for Electrochemical Energy Storage. J. Energy Chem. 2018, 27, 1597–1617. DOI: 10.1016/j.jechem.2018.05.001.
  • Gu, E.; Xu, J.; Du, Y.; Ge, X.; Zhu, X.; Bao, J.; Zhou, X. Understanding the Influence of Different Carbon Matrix on the Electrochemical Performance of Na3V2(PO4)3 Cathode for Sodium-Ion Batteries. J. Alloys Compd. 2019, 788, 240–247. DOI: 10.1016/j.jallcom.2019.02.202.
  • Cao, J.; Wang, Y.; Wang, L.; Yu, F.; Ma, J. Na3V2(PO4)3@C as Faradaic Electrodes in Capacitive Deionization for High-Performance Desalination. Nano Lett. 2019, 19, 823–828. DOI: 10.1021/acs.nanolett.8b04006.
  • Jian, Z.; Zhao, L.; Pan, H.; Hu, Y.-S.; Li, H.; Chen, W.; Chen, L. Carbon Coated Na3V2(PO4)3 as Novel Electrode Material for Sodium Ion Batteries. Electrochem. Commun. 2012, 14, 86–89. DOI: 10.1016/j.elecom.2011.11.009.
  • Zhou, Q. B.; Wang, L. L.; Li, W. Y.; Zeng, S. Y.; Zhao, K. N.; Yang, Y. J.; Wu, Q.; Liu, M. M.; Huang, Q. A.; Zhang, J. J.; Sun, X. L. Carbon-Decorated Na3V2(PO4)3 as Ultralong Lifespan Cathodes for High-Energy-Density Symmetric Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 25036–25043. DOI: 10.1021/acsami.1c06160.
  • Van Nghia, N.; Jafian, S.; Hung, I. M. Synthesis and Electrochemical Performance of the Na3V2(PO4)3 Cathode for Sodium-Ion Batteries. J. Elec. Mater. 2016, 45, 2582–2590. DOI: 10.1007/s11664-016-4425-5.
  • Chen, Y. J.; Xu, Y. L.; He, S. N.; Zhang, B. F.; Guo, L. A New High-Voltage Plateau of Na3V2(PO4)3 for Sodium Ion Batteries: A Promising Cathode with High Energy Density. Ceram. Int. 2021, 47, 26579–26583. DOI: 10.1016/j.ceramint.2021.06.057.
  • Huang, Q.; Liu, C.; Chen, Y.; Wang, Y.; Guo, L. Construction of Simultaneous Modified Na3V2 (PO4)3/C Cathode with K/Zr Substitution and Carbon Nanotubes Enwrapping for High Performance Sodium Ion Battery. Ceram. Int. 2022, 48, 397–406. DOI: 10.1016/j.ceramint.2021.09.115.
  • Quan, B.; Jin, A.; Yu, S. H.; Kang, S. M.; Jeong, J.; Abruna, H. D.; Jin, L.; Piao, Y.; Sung, Y. E. Solvothermal-Derived S-Doped Graphene as an Anode Material for Sodium-Ion Batteries. Adv. Sci. (Weinh) 2018, 5, 1700880. DOI: 10.1002/advs.201700880.
  • Sun, S. Q.; Chen, Y. J.; Cheng, J.; Tian, Z. Y.; Wang, C.; Wu, G. P.; Liu, C. C.; Wang, Y. Z.; Guo, L. Constructing Dimensional Gradient Structure of Na3V2(PO4)3/C@CNTs-WC by Wolfram Substitution for Superior Sodium Storage. Chem. Eng. J. 2021, 420, 130453. DOI: 10.1016/j.cej.2021.130453.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.