172
Views
3
CrossRef citations to date
0
Altmetric
Articles

Ozone-activated CNTs to induce uniform coating of MnO2 as high-performance supercapacitor electrodes

, , , &
Pages 1163-1169 | Received 02 May 2022, Accepted 23 May 2022, Published online: 31 May 2022

References

  • Zhang, A.; Zhao, R.; Hu, L.; Yang, R.; Yao, S.; Wang, S.; Yang, Z.; Yan, Y. Adjusting the Coordination Environment of Mn Enhances Supercapacitor Performance of MnO2. Adv. Energy Mater. 2021, 11, 2101412. DOI: 10.1002/aenm.202101412.
  • Yang, R.; Fan, Y.; Ye, R.; Tang, Y.; Cao, X.; Yin, Z.; Zeng, Z. MnO2-Based Materials for Environmental Applications. Adv. Mater. 2021, 33, 2004862. DOI: 10.1002/adma.202004862.
  • Shi, S.; Tang, Y.; Wang, G.; Yu, W.; Wan, G.; Wu, L.; Deng, Z.; Wang, G. Multiple Reinforcement Effect Induced by Gradient Carbon Coating to Comprehensively Promote Lithium Storage Performance of Ti2Nb10O29. Nano Energy 2022, 96, 107132. DOI: 10.1016/j.nanoen.2022.107132.
  • Zhang, A.; Gao, R.; Hu, L.; Zang, X.; Yang, R.; Wang, S.; Yao, S.; Yang, Z.; Hao, H.; Yan, Y. Rich Bulk Oxygen Vacancies-Engineered MnO2 with Enhanced Charge Transfer Kinetics for Supercapacitor. Chem. Eng. J. 2021, 417, 129186. DOI: 10.1016/j.cej.2021.129186.
  • Shi, S.; Wang, G.; Wan, G.; Tang, Y.; Zhao, G.; Deng, Z.; Chai, J.; Wei, C.; Wang, G. Titanium Niobate (Ti2Nb10O29) Anchored on Nitrogen-Doped Carbon Foams as Flexible and Self-Supported Anode for High-Performance Lithium Ion Batteries. J Colloid Interface Sci. 2021, 587, 622–632. DOI: 10.1016/j.jcis.2020.11.019.
  • Aeby, X.; Poulin, A.; Siqueira, G.; Hausmann, M. K.; Nyström, G. Fully 3D Printed and Disposable Paper Supercapacitors. Adv. Mater. 2021, 33, 2101328. DOI: 10.1002/adma.202101328.
  • Jin, X.; Song, L.; Yang, H.; Dai, C.; Xiao, Y.; Zhang, X.; Han, Y.; Bai, C.; Lu, B.; Liu, Q.; et al. Stretchable Supercapacitor at −30 °C. Energy Environ. Sci. 2021, 14, 3075–3085. DOI: 10.1039/D0EE04066E.
  • Qin, H.; Liu, P.; Chen, C.; Cong, H.; Yu, S. A Multi-Responsive Healable Supercapacitor. Nat. Commun. 2021, 12, 4297. DOI: 10.1038/s41467-021-24568-w.
  • Yang, L.; Guo, X.; Jin, Z.; Guo, W.; Duan, G.; Liu, X.; Li, Y. Emergence of Melanin-Inspired Supercapacitors. Nano Today 2021, 37, 101075. DOI: 10.1016/j.nantod.2020.101075.
  • Yi, T.-F.; Qiu, L.-Y.; Mei, J.; Qi, S.-Y.; Cui, P.; Luo, S.; Zhu, Y.-R.; Xie, Y.; He, Y.-B. Porous Spherical NiO@NiMoO4@PPy Nanoarchitectures as Advanced Electrochemical Pseudocapacitor Materials. Sci. Bull. 2020, 65, 546–556. DOI: 10.1016/j.scib.2020.01.011.
  • Yi, T.; Hirbod, M.; Li, X.; Wang, F.; Zhu, Y.; Hu, J.; Zhang, J.; Li, X. A Review of Niobium Oxides Based Nanocomposites for Lithium-Ion Batteries, Sodium-Ion Batteries and Supercapacitors. Nano Energy 2021, 85, 105955. DOI: 10.1016/j.nanoen.2021.105955.
  • Wei, T.; Peng, P.; Ji, Y.; Zhu, Y.; Yi, T.; Xie, Y. Rational Construction and Decoration of Li5Cr7Ti6O25@C Nanofibers as Stable Lithium Storage Materials. J. Energy Chem. 2022, 71, 400–410. DOI: 10.1016/j.jechem.2022.04.017.
  • Chen, R.; Li, X.; Huang, Q.; Ling, H.; Yang, Y.; Wang, X. Self-Assembled Porous Biomass Carbon/rGO/Nanocellulose Hybrid Aerogels for Self-Supporting Supercapacitor Electrodes. Chem. Eng. J. 2021, 412, 128755. DOI: 10.1016/j.cej.2021.128755.
  • Nguyen, P.; Jang, J.; Lee, Y.; Choi, S.; In, J. Laser-Assisted Fabrication of Flexible Monofilament Fiber Supercapacitors. J. Mater. Chem. A 2021, 9, 4841–4850. DOI: 10.1039/D0TA10283K.
  • Wang, T.; Li, K.; Le, Q.; Zhu, S.; Guo, X.; Jiang, D.; Zhang, Y. Tuning Parallel Manganese Dioxide to Hollow Parallel Hydroxyl Oxidize Iron Replicas for High-Performance Asymmetric Supercapacitors. J. Colloid Interface Sci. 2021, 594, 812–823. DOI: 10.1016/j.jcis.2021.03.075.
  • Haldorai, Y.; Giribabu, K.; Hwang, S.; Kwak, C.; Huh, Y.; Han, Y. Facile Synthesis of α-MnO2 Nanorod/Graphene Nanocomposite Paper Electrodes Using a 3D Precursor for Supercapacitors and Sensing Platform to Detect 4-Nitrophenol. Electrochim. Acta 2016, 222, 717–727. DOI: 10.1016/j.electacta.2016.11.028.
  • Kumar, K.; Pandey, D.; Thomas, J. High Voltage Asymmetric Supercapacitors Developed by Engineering Electrode Work Functions. ACS Energy Lett. 2021, 6, 3590–3599. DOI: 10.1021/acsenergylett.1c01484.
  • Zhang, Y.; Cui, X.; Fu, J.; Liu, Y.; Wu, Y.; Zhou, J.; Zhang, Z.; Xie, E. Commercial-Level Mass-Loading MnO2 with Ion Diffusion Channels for High-Performance Aqueous Energy Storage Devices. J. Mater. Chem. A 2021, 9, 17945–17954. DOI: 10.1039/D1TA04850C.
  • Huang, Y.; Bian, S. Vacuum-Filtration Assisted Layer-by-Layer Strategy to Design MXene/Carbon Nanotube@MnO2 All-in-One Supercapacitors. J. Mater. Chem. A 2021, 9, 21347–21356. DOI: 10.1039/D1TA06089A.
  • Wqa, B.; Hx, A.; Hong, G. Defect Engineering Tuning of MnO2 Nanorods Bifunctional Cathode for Flexible Asymmetric Supercapacitors and Microbial Fuel Cells. J. Power Sources 2021, 491, 229583. DOI: 10.1016/j.jpowsour.2021.229583.
  • Zhu, J.; He, J. Facile Synthesis of Graphene-Wrapped Honeycomb MnO2 Nanospheres and Their Application in Supercapacitors. ACS Appl. Mater. Interfaces 2012, 4, 1770–1776. DOI: 10.1021/am3000165.
  • Liu, Y.; Zhang, Y.; Sun, Z.; Cheng, S.; Cui, P.; Wu, Y.; Zhang, J.; Fu, J.; Xie, E. New Insight into the Mechanism of Multivalent Ion Hybrid Supercapacitor: From the Effect of Potential Window Viewpoint. Small 2020, 16, 2003403. DOI: 10.1002/smll.202003403.
  • Zhou, Y.; Cheng, X.; Tynan, B.; Sha, Z.; Huang, F.; Islam, M.; Zhang, J.; Rider, A.; Dai, L.; Chu, D.; et al. High-Performance Hierarchical MnO2/CNT Electrode for Multifunctional Supercapacitors. Carbon 2021, 184, 504–513. DOI: 10.1016/j.carbon.2021.08.051.
  • Shi, S.; Wan, G.; Wu, L.; He, Z.; Wang, K.; Tang, Y.; Xu, X.; Wang, G. Ultrathin Manganese Oxide Nanosheets Uniformly Coating on Carbon Nanocoils as High-Performance Asymmetric Supercapacitor Electrodes. J. Colloid Interface Sci. 2019, 537, 142–150. DOI: 10.1016/j.jcis.2018.11.006.
  • Mohan, R. Surface Modification of Carbon Nanotubes with Combined UV and Ozone Treatments. Fuller. Nanotub. Carbon Nanostruct. 2014, 23, 11–16. DOI: 10.1080/1536383X.2014.885960.
  • Franco, C. A Study on the Action of Ozone on Multiwall Carbon Nanotubes. Fuller. Nanotub. Carbon Nanostruct. 2008, 16, 1–17. DOI: 10.1080/15363830701779281.
  • Wang, G.; Gao, Z.; Tang, S.; Chen, C.; Duan, F.; Zhao, S.; Lin, S.; Feng, Y.; Zhou, L.; Qin, Y. Microwave Absorption Properties of Carbon Nanocoils Coated with Highly Controlled Magnetic Materials by Atomic Layer Deposition. ACS Nano 2012, 6, 11009–11017. DOI: 10.1021/nn304630h.
  • Zhao, G.; Tang, Y.; Wan, G.; Xu, X.; Zhou, X.; Zhou, M.; Hao, C.; Deng, S.; Wang, G. High-Performance and Flexible All-Solid-State Hybrid Supercapacitor Constructed by NiCoP/CNT and N-Doped Carbon Coated CNT Nanoarrays. J. Colloid Interface Sci. 2020, 572, 151–159. DOI: 10.1016/j.jcis.2020.03.084.
  • Jadhav, H.; Roy, A.; Thorat, G.; Chung, W.; Seo, J. Hierarchical Free-Standing Networks of MnCo2S4 as Efficient Electrocatalyst for Oxygen Evolution Reaction. J. Ind. Eng. Chem. 2019, 71, 452–459. DOI: 10.1016/j.jiec.2018.12.002.
  • Yi, T.; Chang, H.; Wei, T.; Qi, S.; Li, Y.; Zhu, Y. Approaching High-Performance Electrode Materials of ZnCo2S4 Nanoparticle Wrapped Carbon Nanotubes for Supercapacitors. J. Materiomics 2021, 7, 563–576. DOI: 10.1016/j.jmat.2020.11.015.
  • Yi, T.; Shi, L.; Han, X.; Wang, F.; Zhu, Y.; Xie, Y. Approaching High-Performance Lithium Storage Materials by Constructing Hierarchical CoNiO2@CeO2 Nanosheets. Energy Environ. Mater. 2021, 4, 586–595. DOI: 10.1002/eem2.12140.
  • Thommes, M.; Kaneko, K.; Neimark, A.; Olivier, J.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. DOI: 10.1515/pac-2014-1117.
  • Yu, L.; Wan, G.; Qin, Y.; Wang, G. Atomic Layer Deposition Assisted Fabrication of High-Purity Carbon Nanocoil for Electrochemical Energy Storage. Electrochim. Acta 2018, 268, 283–294. DOI: 10.1016/j.electacta.2018.02.114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.