170
Views
5
CrossRef citations to date
0
Altmetric
Articles

Experimental study on physical and mechanical properties and micro mechanism of carbon nanotubes cement-based composites

, , , &
Pages 1252-1263 | Received 21 May 2022, Accepted 07 Jun 2022, Published online: 23 Jun 2022

References

  • Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. DOI: 10.1038/354056a0.
  • Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes. Nature 1996, 381, 678–680. DOI: 10.1038/381678a0.
  • Wong, W. E.; Sheehan, P. E.; Lieber, C. M. Nanobeam Mechanics: elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science 1997, 277, 1971–1975. [Database] DOI: 10.1126/science.277.5334.1971.
  • Wu, J. Y.; Jing, H. W.; Gao, Y.; Meng, Q. B.; Yin, Q.; Du, Y. Effects of Carbon Nanotube Dosage and Aggregate Size Distribution on Mechanical Property and Microstructure of Cemented Rockfill. Cem. Concr. Compos. 2022, 127, 104408. DOI: 10.1016/j.cemconcomp.2022.104408.
  • Li, W. W.; Ji, W. M.; Fang, G. H.; Liu, Y. Q.; Xing, F.; Liu, Y. K.; Dong, B. Q. Electrochemical Impedance Interpretation for the Fracture Toughness of Carbon Nanotube/Cement Composites. Constr. Build. Mater. 2016, 114, 499–505. DOI: 10.1016/j.conbuildmat.2016.03.215.
  • Kim, H. Chloride Penetration Monitoring in Reinforced Concrete Structure Using Carbon Nanotube/Cement Composite. Constr. Build. Mater. 2015, 96, 29–36. DOI: 10.1016/j.conbuildmat.2015.07.190.
  • Fakharpour, M.; Karimi, R. Electromagnetic Wave Absorption Properties of MWCNTs-COOH/Cement Composites with Different Shapes of Chiral, Armchair and Zigzag. Fuller. Nanotub. Car. Nanostr. 2021, 29, 386–393. DOI: 10.1080/1536383X.2020.1849148.
  • Yoo, D. Y.; You, I.; Youn, H.; Lee, S. J. Electrical and Piezoresistive Properties of Cement Composites with Carbon Nanomaterials. J. Com. Mater. 2018, 18, 371–384.
  • Kim, G. M.; Yoon, H. N.; Lee, H. K. Autogenous Shrinkage and Electrical Characteristics of Cement Pastes and Mortars with Carbon Nanotube and Carbon Fiber. Constr. Build. Mater. 2018, 177, 428–435. DOI: 10.1016/j.conbuildmat.2018.05.127.
  • Jang, S. H.; Hochstein, D. P.; Kawashima, S.; Yin, H. Experiments and Micromechanical Modeling of Electrical Conductivity of Carbon Nanotube/Cement Composites with Moisture. Cem. Concr. Compos. 2017, 77, 49–59. DOI: 10.1016/j.cemconcomp.2016.12.003.
  • Nam, I. W.; Choi, J. H.; Kim, C. G.; Lee, H. K. Fabrication and Design of Electromagnetic Wave Absorber Composed of Carbon Nanotube-Incorporated Cement Composites. Com. Struct. 2018, 206, 439–447. DOI: 10.1016/j.compstruct.2018.07.058.
  • Dong, S. Q.; Gao, B. Preparation and Mechanical Properties of Carbon Nanotube Reinforced Cement Composites. Func. Mater. 2018, 49, 2169–2173.
  • Li, Q. H.; Xu, S. J.; Xu, S. L.; Lv, Y.; Ke, J. T.; Wu, Y. X. Using Carbon Nanotubes to Improve the Crack Initiation Fracture Toughness of Fiber Mortar. J. Build. Mater. 2017, 2, 186–190.
  • Carriço, A.; Bogas, J. A.; Hawreen, A.; Guedes, M. Durability of Multi-Walled Carbon Nanotube Reinforced Concrete. Constr. Build. Mater. 2018, 164, 121–133. DOI: 10.1016/j.conbuildmat.2017.12.221.
  • Sharma, S.; Kothiyal, N. C. Facile Growth of Carbon Nanotubes Coated with Carbon Nanoparticles: A Potential Low-Cost Hybrid Nanoadditive for Improved Mechanical, Electrical, Microstructural and Crystalline Properties of Cement Mortar Matrix. Constr. Build. Mater. 2016, 123, 829–846. DOI: 10.1016/j.conbuildmat.2016.07.045.
  • Xu, S.; Liu, J.; Li, Q. Mechanical Properties and Microstructure of Multi-Walled Carbon Nanotubes- Reinforced Cement Paste. Constr. Build. Mater. 2015, 76, 16–23. DOI: 10.1016/j.conbuildmat.2014.11.049.
  • Konsta-Gdoutos, M. S.; Batis, G.; Danoglidis, P. A.; Zacharopoulou, A. K.; Zacharopoulou, E. K.; Falara, M. G.; Shah, S. P. Effect of CNT and CNF Loading and Count on the Corrosion Resistance, Conductivity and Mechanical Properties of Nanomodified OPC Mortars. Constr. Build. Mater. 2017, 147, 48–57. DOI: 10.1016/j.conbuildmat.2017.04.112.
  • Sedaghatdoost, A.; Behfarnia, K. Mechanical Properties of Portland Cement Mortar Containing Multi-Walled Carbon Nanotubes at Elevated Temperatures. Constr. Build. Mater. 2018, 176, 482–489. DOI: 10.1016/j.conbuildmat.2018.05.095.
  • Yeswanth, S. T.; Jagadeesh, P. Effect of Graphene Oxide on the Microstructure and Hydration Characteristics of Ultrafine Slag Cement Composites. Fuller. Nanotub. Car. Nanostr. 2022, 1–12. DOI: 10.1080/1536383X.2022.2068529.
  • Parveen, S.; Rana, S.; Fangueiro, R.; Paiva, M. C. Microstructure and Mechanical Properties of Carbon Nanotubes Reinforced Cementitious Composites Developed Using a Novel Dispersion Technique. Cem. Concr. Res. 2015, 73, 215–227. DOI: 10.1016/j.cemconres.2015.03.006.
  • Liu, Y. K. Study on Dynamic Properties and Action Mechanism of Carbon Nanotube Cement-Based Composites. Harbin Institute of Technology Master’s Thesis, Harbin, China, 2015.
  • Liu, X. Y.; Jiang, B.; Liao, G.; Zuo, J. Q.; Xu, J.; Shah, S. P. Research on the Smart Behavior of MCNT Grafted CF/Cement-Based Composites. Fuller. Nanotub. Car. Nanostr. 2021, 29, 844–851. DOI: 10.1080/1536383X.2021.1910239.
  • Peters, W. H.; Ranson, W. F. Digital Imaging Techniques in Experimental Stress Analysis. Kluwer Law International, India, 1982.
  • Yamaguchi, I. A Laser-Speckle Strain Gauge. J. Phys. E: Sci. Instrum. 1981, 14, 1270–1273. DOI: 10.1088/0022-3735/14/11/012.
  • Zhao, Y. R.; Hao, S.; Wang, L.; Liu, Y. J.; Shi, J. N. Impact Damage Characteristics of Steel Fiber Reinforced Cement Matrix Composites Based on Digital Image Correlation. Acta. Mater. Compos. Sin. 2018, 35, 1325–1331.
  • Bai, P. X.; Ni, Y. J.; Jiang, R.; Lei, D. Experimental Study on Shear Failure of Concrete Based on Digital Image Correlation Technology. Sci. Tech. Eng. 2018, 18, 105–110.
  • Liu, G. F.; Zhu, D.; Chen, Z. F.; Zhang, H. D. Experimental Study on Mechanical Properties of Carbon Nanotube Activated Powder Concrete. China Concr. Cem. Prod. 2021, 8, 5–9.
  • GB175-2007 ; General Portland cement. Chinese National Standards: Beijing, China, 2007.
  • Zhu, D. Experimental Study on Mechanical Properties and Sulfate Resistance of Carbon Nanotube Ultra-High Performance Concrete. Changzhou University Master’s Thesis, Changzhou, China, 2021.
  • GB/T 1346-2011 ; Test Method for Water Consumption, Setting Time and Stability of Cement Standard Consistency. Chinese National Standards: Beijing, China, 2011.
  • GB/T 17671-1999 ; Method of Testing cement-Determination of Strength. Chinese National Standards: Beijing, China, 1999.
  • Feng, X. Influence of cement particle characteristics on durability of pavement concrete. Xi'an, China, 2010.
  • Makar, J. M.; Chan, G. W. Groeth of Cement Hydration Products on Single-Walled Carbon Nanotubes. J. Am. Cer. Soc. 2009, 92, 1303–1310. DOI: 10.1111/j.1551-2916.2009.03055.x.
  • Petrunin, S.; Vaganov, V.; Reshetniak, V.; Zakrevskaya, L. Influence of Carbon Nanotubes on the Structure Formation of Cement Matrix. Inter. Conf. Innova. Mater. Struc. Tec. 2015, 96, 12–46.
  • Lu, L.; Ouyang, D.; Xu, W. Mechanical Properties and Durability of Ultra High Strength Concrete Incorporating Multi-Walled Carbon Nanotubes. Materials 2016, 9, 419. DOI: 10.3390/ma9060419.
  • Li, G. Y.; Wang, P. M.; Zhao, X. Mechanical Behavior and Microstructure of Cement Composites Incorporating Surface-Treated Multi-Walled Carbon Nanotubes. Carbon 2005, 43, 1239–1245. DOI: 10.1016/j.carbon.2004.12.017.
  • Cwirzen, A.; Habermehl-Cwirzen, K.; Penttala, V. Surface Decoration of Carbon Nanotubes and Mechanical Properties of Cement/Carbon Nanotube Composites. Adv. Cem. Res. 2008, 20, 65–73. DOI: 10.1680/adcr.2008.20.2.65.
  • Guan, X. C.; Bai, S.; Li, H.; Ou, J. P. Mechanical Properties and Microstructure of Multi-Walled Carbon Nanotube-Reinforced Cementitious Composites under the Early-Age Freezing Conditions. Constr. Build. Mater. 2020, 223, 117–317.
  • Zhang, D.; Lu, F. L.; Liang, Y. J. Effect of Carbon Nanotubes on Mechanical Properties and Durability of Cement. Concrete 2019, 11, 10–14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.