195
Views
0
CrossRef citations to date
0
Altmetric
Articles

Single-step synthesis of graphene nanosheets-carbon nanotubes hybrid structure by chemical vapor deposition of methane using Fe-Mo-MgO catalysts

, ORCID Icon, ORCID Icon &
Pages 109-119 | Received 18 Jul 2022, Accepted 08 Sep 2022, Published online: 19 Sep 2022

References

  • Iijima, S. Helical Microtubules of Graphitic Carbon. Nature. 1991, 354, 56–58. DOI: 10.1038/354056a0.
  • Popov, V. N. Carbon Nanotubes: Properties and Application. Mater. Sci. Eng. R Report. 2004, 43, 61–102. DOI: 10.1016/j.mser.2003.10.001.
  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004, 306, 666–669. DOI: 10.1126/science.1102896.
  • Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of Individual Gas Molecules Adsorbed on Graphene. Nat. Mater. 2007, 6, 652–655.
  • Wang, X.; Zhi, L.; Mullen, K. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Lett. 2008, 8, 323–327.
  • Yoo, E.; Kim, J.; Hosono, E.; Zhou, J.-S.; Kudo, T.; Honma, I. Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries. Nano Lett. 2008, 8, 2277–2282.
  • Yan, J.; Wei, T.; Shao, B.; Fan, Z.; Qian, W.; Zhang, M.; Wei, F. Preparation of a Graphene Nanosheet/Polyaniline Composite with High Specific Capacitance. Carbon. 2010, 48, 487–493. DOI: 10.1016/j.carbon.2009.09.066.
  • Lin, J.; Teweldebrhan, D.; Ashraf, K.; Liu, G.; Jing, X.; Yan, Z.; Li, R.; Ozkan, M.; Lake, R. K.; Balandin, A. A.; Ozkan, C. S. Gating of Single-Layer Graphene with Single-Stranded Deoxyribonucleic Acids. Small. 2010, 6, 1150–1155. DOI: 10.1002/smll.200902379.
  • Salam, M. A.; Obaid, A. Y.; El-Shishtawy, R. M.; Mohamed, S. A. Synthesis of Nanocomposites of Polypyrrole/Carbon Nanotubes/Silver Nano Particles and Their Application in Water Disinfection. RSC Adv. 2017, 7, 16878–16884. DOI: 10.1039/C7RA01033H.
  • Hussein, M. A.; El-Shishtawy, R. M.; Alamry, K. A.; Asiri, A. M.; Mohamed, S. A. Efficient Water Disinfection Using Hybrid Polyaniline/Graphene/Carbon Nanotube Nanocomposites. Environ. Technol. 2019, 40, 2813–2824.
  • Manoukian, M.; Tavakol, H.; Fashandi, H. Synthesis of Highly Uniform Sulfur-Doped Carbon Sphere Using CVD Method and Its Application for Cationic Dye Removal in Comparison with Undoped Product. J. Environ. Chem. Eng. 2018, 6, 6904–6915. DOI: 10.1016/j.jece.2018.10.026.
  • Hasheminejad, N.; Tavakol, H.; Salvenmoser, W. Preparation of Gold-Decorated Simple and Sulfur-Doped Carbon Spheres for Desulfurization of Fuel. J. Cleaner Prod. 2020, 264, 121684. DOI: 10.1016/j.jclepro.2020.121684.
  • Tavakol, H.; Hassani, F. Sulfur Doped Carbon Porous as an Efficient Catalyst for Sustainable Energy Processes. Environ. Prog. Sustain. Energy. 2020, 39, 13299. DOI: 10.1002/ep.13299.
  • Dong, X.; Wang, X.; Wang, L.; Song, H.; Zhang, H.; Huang, W.; Chen, P. 3D Graphene Foam as a Monolithic and Macroporous Carbon Electrode for Electrochemical Sensing. ACS Appl. Mater. Interface. 2012, 4, 3129–3133. DOI: 10.1021/am300459m.
  • Shi, W.; Chen, J.; Yang, Q.; Wang, S.; Xiong, C. Novel Three-Dimensional Carbon Nanotube-Graphene Architecture with Abundant Chambers and Its Applications in Lithium-Silicon Batteries. J. Phys. Chem. C. 2016, 120, 13807–13814. DOI: 10.1021/acs.jpcc.6b03864.
  • Prasad, K. P.; Chen, Y.; Chen, P. Three-Dimensional Graphene-Carbon Nanotube Hybrid for High-Performance Enzymatic Biofuels Cells. ACS Appl. Mater. Interface. 2014, 6, 3387–3393. DOI: 10.1021/am405432b.
  • Hong, T. K.; Lee, D. W.; Choi, H. J.; Shin, H. S.; Kim, B. S. Transparent, Flexible Conducting Hybrid Multilayer Thin Films of Multiwalled Carbon Nanotubes with Graphene Nanosheets. ACS Nano. 2010, 4, 3861–3868. DOI: 10.1021/nn100897g.
  • Byon, H. R.; Lee, S. W.; Chen, S.; Hammond, P. T.; Shao-Horn, Y. Thin Films of Carbon Nanotubes and Chemically Reduced Graphenes for Electrochemical Micro-Capacitors. Carbon. 2011, 49, 457–467. DOI: 10.1016/j.carbon.2010.09.042.
  • Peng, L. W.; Feng, Y. Y.; Lv, P.; Lei, D.; Shen, Y. T.; Li, Y.; Feng, W. Transparent, Conductive, and Flexible Multiwalled Carbon Nanotube/Graphene Hybrid Electrodes with Two Three-Dimensional Microstructures. J. Phys. Chem. C. 2012, 116, 4970–4978. DOI: 10.1021/jp209180j.
  • Tung, V. C.; Chen, L.-M.; Allen, M. J.; Wassei, J. K.; Nelson, K.; Kaner, R. B.; Yang, Y. Low-Temperature Solution Processing of Graphene-Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors. Nano Lett. 2009, 9, 1949–1955.
  • Cai, D.; Song, M.; Xu, C. Highly Conductive Carbon- Nanotube/Graphite-Oxide Hybrid Films. Adv. Mater. 2008, 20, 1706–1709. DOI: 10.1002/adma.200702602.
  • Bon, S. B.; Valentini, L.; Kenny, J. M.; Peponi, L.; Verdejo, R.; Lopez-Manchado, M. A. Electrodeposition of Transparent and Conducting Graphene/Carbon Nanotube Thin Films. Phys. Stat. Sol. (a). 2010, 207, 2461–2466. DOI: 10.1002/pssa.201026138.
  • Wei, X.; Tao, J.; Liu, Y.; Bao, R.; Li, F.; Fang, D.; Li, C.; Yi, J. High Strength and Electrical Conductivity of Copper Matrix Composites Reinforced by Carbon Nanotube-Graphene Oxide Hybrids with Hierarchical Structure and Nanoscale Twins. Diamond Relat. Mater. 2019, 99, 107537. DOI: 10.1016/j.diamond.2019.107537.
  • Fan, Z. J.; Yan, J.; Wei, T.; Ning, G. Q.; Zhi, L.-J.; Liu, J. C.; Cao, D. X.; Wang, G.-L.; Wei, F. Nanographene-Constructed Carbon Nanofibers Grown on Graphene Sheets by Chemical Vapor Deposition: High-Performance Anode Materials for Lithium Ion Batteries. ACS Nano. 2011, 5, 2787–2794. DOI: 10.1021/nn200195k.
  • Chen, S.; Chen, P.; Wang, Y. Carbon Nanotubes Grown in Situ on Graphene Nanosheets as Superior Anodes for Li-Ion Batteries. Nanoscale. 2011, 3, 4323–4329. DOI: 10.1039/c1nr10642b.
  • Du, F.; Yu, D. S.; Dai, M. L.; Ganguli, S.; Varshney, V.; Roy, A. K. Preparation of Tunable 3D Pillared Carbon Nanotube-Graphene Networks for High-Performance Capacitance. Chem. Mater. 2011, 23, 4810–4816. DOI: 10.1021/cm2021214.
  • Jyoti, J.; Gupta, T. K.; Singh, B. P.; Sandhu, M.; Tripathi, S. K. Recent Advancement in Three Dimensional Graphene-Carbon Nanotubes Hybrid Materials for Energy Storage and Conversion Applications. J. Storage. Mater. 2022, 50, 104235. DOI: 10.1016/j.est.2022.104235.
  • Dong, X.; Li, B.; Wei, A.; Cao, X.; Chan-Park, M. B.; Zhang, H.; Li, L.-J.; Huang, W.; Chen, P. One-Step Growth of Graphene–Carbon Nanotube Hybrid Materials by Chemical Vapor Deposition. Carbon. 2011, 49, 2944–2949. DOI: 10.1016/j.carbon.2011.03.009.
  • Jousseaume, V.; Cuzzocrea, J.; Bernier, N.; Renard, V. T. Few Graphene Layers/Carbon Nanotube Composites Grown at Complementary-Metal-Oxide-Semiconductor Compatible Temperature. Appl. Phys. Lett. 2011, 98, 123103–123105. DOI: 10.1063/1.3569142.
  • Zhuo, C.; Alves, J. O.; Tenorio, J. A. S.; Levendis, Y. A. Synthesis of Carbon Nanomaterials through up-Cycling Agricultural and Municipal Solid Wastes. Ind. Eng. Chem. Res. 2012, 51, 2922–2930. DOI: 10.1021/ie202711h.
  • El-Ahwany, O. M.; Awadallah, A. E.; Aboul-Enein, A. A.; Abdel-Azim, S. M.; Aboul-Gheit, N. A. K.; Abo-EL-Enein, S. A. Dual Growth of Graphene Nanoplatelets and Carbon Nanotubes Hybrid Structure via Chemical Vapor Deposition of Methane over Fe-MgO Catalysts. Fulleren. Nanotube. Carbon Nanostruct. 2020, 28, 435–445. DOI: 10.1080/1536383X.2019.1697243.
  • Zhang, W.; Xie, H.; Zhang, R.; Jian, M.; Wang, C.; Zheng, Q.; Wei, F.; Zhang, Y. Synthesis of Three-Dimensional Carbon Nanotube/Graphene Hybrid Materials by a Two-Step Chemical Vapor Deposition Process. Carbon. 2015, 86, 358–362. DOI: 10.1016/j.carbon.2015.01.051.
  • Lee, D. H.; Kim, J. E.; Han, T. H.; Hwang, J. W.; Jeon, S.; Choi, S.-Y.; Hong, S. H.; Lee, W. J.; Ruoff, R. S.; Kim, S. O. Versatile Carbon Hybrid Films Composed of Vertical Carbon Nanotubes Grown on Mechanically Compliant Graphene Films. Adv. Mater. 2010, 22, 1247–1252.
  • Zhang, H.; Liu, Y.; Tao, J.; Liu, Y.; Bao, R.; Li, F.; Yi, J. Direct Synthesis of Carbon Nanotube-Graphene Hybrids on Copper Powders and the Mechanical Properties of Corresponding Composites. Mater. Sci. Eng. A. 2021, 825, 141861. DOI: 10.1016/j.msea.2021.141861.
  • Li, Y.; Li, D.; Wang, G. Methane Decomposition to COx-Free Hydrogen and Nano-Carbon Material on Group 8-10 Base Metal Catalysts: A Review. Catal. Today. 2011, 162, 1–48. DOI: 10.1016/j.cattod.2010.12.042.
  • Shah, K. A.; Tali, B. A. Synthesis of Carbon Nanotubes by Catalytic Chemical Vapor Deposition: A Review on Carbon Sources, Catalysts and Substrates. Mater. Sci. Semicond. Process. 2016, 41, 67–82. DOI: 10.1016/j.mssp.2015.08.013.
  • Pudukudy, M.; Yaakob, Z. Methane Decomposition over Ni, Co and Fe Based Monometallic Catalysts Supported on Sol Gel Derived SiO2 Microflakes. Chem. Eng. J. 2015, 262, 1009–1021. DOI: 10.1016/j.cej.2014.10.077.
  • Awadallah, A. E.; Abdel-Mottaleb, M. S.; Aboul-Enein, A. A.; Yonis, M. M.; Aboul-Gheit, A. K. Catalytic Decomposition of Natural Gas to CO/CO2 Free Hydrogen Production and Carbon Nanomaterials Using MgO Supported Monometallic Iron Family Catalysts. Chem. Eng. Commun. 2015, 202, 163–174. DOI: 10.1080/00986445.2013.836631.
  • Al Fatesh, A. S.; Kasim, S. O.; Ibrahim, A. A.; Al-Awadi, A. S.; Abasaeed, A. E.; Fakeeha, A. H.; Awadallah, A. E. Catalytic Methane Decomposition over ZrO2 Supported Iron Catalysts: Effect of WO3 and La2O3 Addition on the Catalytic Activity and Stability. Renew. Energy. 2020, 155, 969–978. DOI: 10.1016/j.renene.2020.04.038.
  • Lobiak, E. V.; Kuznetsova, V. R.; Flahaut, E.; Okotrub, A. V.; Bulusheva, L. G. Effect of Co-Mo Catalyst Preparation and CH4/H2 Flow on Carbon Nanotube Synthesis. Fulleren. Nanotube Carbon Nanostruct. 2020, 28, 707–715. DOI: 10.1080/1536383X.2020.1749051.
  • Ahmed, S.; Aitani, A.; Rahman, F.; Al-Dawood, A.; Al-Muhaish, F. Decomposition of Hydrocarbons to Hydrogen and Carbon. Appl. Catal. A Gen. 2009, 359, 1–24. DOI: 10.1016/j.apcata.2009.02.038.
  • Ichi-oka, H-A.; Higashi, N-o.; Yamada, Y.; Miyake, T.; Suzuki, T. Carbon Nanotube and Nanofiber Syntheses by the Decomposition of Methane on Group 8–10 Metal-Loaded MgO Catalysts. Diam. Relat. Mater. 2007, 16, 1121–1125. DOI: 10.1016/j.diamond.2006.11.008.
  • Pinilla, J. L.; Utrilla, R.; Lázaro, M. J.; Moliner, R.; Suelves, I.; García, A. B. Ni- and Fe-Based Catalysts for Hydrogen and Carbon Nanofilament Production by Catalytic Decomposition of Methane in a Rotary Bed Reactor. Fuel. Process. Technol. 2011, 92, 1480–1488. DOI: 10.1016/j.fuproc.2011.03.009.
  • Dupuis, A. C. The Catalyst in the CCVD of Carbon Nanotubes—A Review. ‏ Prog. Mater. Sci. 2005, 50, 929–961. DOI: 10.1016/j.pmatsci.2005.04.003.
  • Wang, B.; Li, X.; Chen, P.; Zhu, B. Effect of Mo Addition on the Microstructure and Catalytic Performance Fe-Mo Catalyst. J. Alloy Compd. 2019, 786, 440–448. DOI: 10.1016/j.jallcom.2019.01.281.
  • Yahyazadeh, A.; Khoshandam, B. Carbon Nanotube Synthesis via the Catalytic Chemical Vapor Deposition of Methane in the Presence of Iron, Molybdenum, and Iron–Molybdenum Alloy Thin Layer Catalysts. Results Phys. 2017, 7, 3826–3837. DOI: 10.1016/j.rinp.2017.10.001.
  • Kim, P.; Lee, C. J. The Reduction Temperature Effect of Fe–Co/MgO Catalyst on Characteristics of Multi-Walled Carbon Nanotubes. Catalysts. 2018, 8, 361. DOI: 10.3390/catal8090361.
  • Rezaee, S.; Ghaderi, A.; Boochani, A.; Solaymani, S. Synthesis of Multiwalled Carbon Nanotubes on Cu-Fe Nano-Catalyst Substrate. Results Phys. 2017, 7, 3640–3644. DOI: 10.1016/j.rinp.2017.09.040.
  • Awadallah, A. E.; Aboul-Enein, A. A.; Azab, M. A.; Abdel-Monem, Y. K. Influence of Mo or Cu Doping in Fe/MgO Catalyst for Synthesis of Single-Walled Carbon Nanotubes by Catalytic Chemical Vapor Deposition of Methane. Fulleren. Nanotube Carbon Nanostruct. 2017, 25, 256–264. DOI: 10.1080/1536383X.2017.1283619.
  • Xu, J. D.; Zhu, K. T.; Weng, X. F.; Weng, W. Z.; Huang, C. J.; Wan, H. L. Carbon Nanotube-Supported Fe–Mn Nanoparticles: A Model Catalyst for Direct Conversion of Syngas to Lower Olefins. Catal. Today. 2013, 215, 86–94. DOI: 10.1016/j.cattod.2013.04.018.
  • Jana, P.; de la Peña O’Shea, V. A.; Coronado, J. M.; Serrano, D. P. Co-Production of Graphene Sheets and Hydrogen by Decomposition of Methane Using Cobalt Based Catalysts. Energy Environ. Sci. 2011, 4, 778–783. DOI: 10.1039/c0ee00490a.
  • Shen, Y.; Lua, A. C. A Facile Method for the Large-Scale Continuous Synthesis of Graphene Sheets Using a Novel Catalyst. Sci. Rep. 2013, 3, 3037. DOI: http://doi.org/10.1038/srep03037. Article number: 3037.
  • Pudukudy, M.; Kadier, A.; Yaakob, Z.; Takriff, M. S. Non-Oxidative Thermocatalytic Decomposition of Methane into COx Free Hydrogen and Nanocarbon over Unsupported Porous NiO and Fe2O3 Catalysts. Int. J. Hydrogen Energy. 2016, 41, 18509–18521. DOI: 10.1016/j.ijhydene.2016.08.160.
  • Awadallah, A. E.; Aboul-Enein, A. A.; Kandil, U. F.; Taha, M. R. Facile and Large-Scale Synthesis of High Quality Few-Layered Graphene Nano-Platelets via Methane Decomposition over Unsupported Iron Family Catalysts. Mater. Chem. Phys. 2017, 91, 75–85.
  • Allaedini, G.; Aminayi, P.; Tasirin, S.; Mahmoudi, E. Chemical Vapor Deposition of Methane in the Presence of Cu/Si Nanoparticles as a Facile Method for Graphene Production. Fulleren. Nanotube Carbon Nanostruct. 2015, 23, 968–973. DOI: 10.1080/1536383X.2015.1057279.
  • Deyab, M. A.; Awadallah, A. E.; Ahmed, H. A.; Mohsen, Q. Progress Study on Nickel Ferrite Alloy-Graphene Nanosheets Nanocomposites as Supercapacitor Electrodes. J. Storage. Mater. 2022, 46, 103926. DOI: 10.1016/j.est.2021.103926.
  • Llorente, J. M.; Rives, V.; Malet, P.; Gil-Llambías, F. J. MoO3/MgO Systems: Effect of Preparation Method on Their Physicochemical Properties. J. Catal. 1992, 135, 1–12. DOI: 10.1016/0021-9517(92)90264-I.
  • Radwan, N. R. E.; Ghozza, A. M.; El-Shobaky, G. A. Solid–Solid Interactions in Co3O4–MoO3/MgO System. Thermochim. Acta. 2003, 398, 211–221. DOI: 10.1016/S0040-6031(02)00369-6.
  • Aboul-Enein, A. A.; Awadallah, A. E. Production of Nanostructured Carbon Materials Using Fe-Mo/MgO Catalysts via Mild Catalytic Pyrolysis of Polyethylene Waste. Chem. Eng. J. 2018, 354, 802–816. DOI: 10.1016/j.cej.2018.08.046.
  • Torres, D.; Pinilla, J. L.; Lázaro, M. J.; Moliner, R.; Suelves, I. Suelves, I. Hydrogen and Multiwall Carbon Nanotubes Production by Catalytic Decomposition of Methane: Thermogravimetric Analysis and Scaling-up of Fe-Mo Catalysts. Int. J. Hydrogen Energy. 2014, 39, 3698–3709. DOI: 10.1016/j.ijhydene.2013.12.127.
  • Brito, J. L.; Laine, J.; Pratt, K. C. Temperature-Programmed Reduction of Ni-Mo Oxides. J. Mater. Sci. 1989, 24, 425–431. DOI: 10.1007/BF01107422.
  • Zhang, C.; Qin, S.; Xu, J.; Wu, B.; Xiang, H.; Li, Y. Effect of Mo Addition on Precipitated Fe Catalysts for Fischer–Tropsch Synthesis. J. Mol. Cat. A Chem. 2009, 304, 128–134.
  • Liu, Q.; Ma, J.; Zhou, Y.; Wang, T. Synthesis of MgO-Modified Mesoporous Silica and Its Adsorption Performance toward CO2. Wuhan Univ. J. Nat. Sci. 2014, 19, 111–116. DOI: 10.1007/s11859-014-0986-4.
  • Yoon, Y. S.; Suzuki, K.; Hayakawa, T.; Hamakawa, S.; Shishido, T.; Takehira, K. Structures and Catalytic Properties of Magnesium Molybdate in the Oxidative Dehydrogenation of Alkanes. Catal. Lett. 1999, 59, 165–172. DOI: 10.1023/A:1019068420890.
  • Maheswari, N.; Muralidharan, G. Controlled Synthesis of Nanostructured Molybdenum Oxide Electrodes for High Performance Supercapacitor Devices. Appl. Sur. Sci. 2017, 416, 461–469. DOI: 10.1016/j.apsusc.2017.04.094.
  • Gao, P.; Tian, X.; Yang, C.; Zhou, Z.; Li, Y.; Wang, Y.; Komarneni, S. Fabrication, Performance and Mechanism of MgO Meso-/Macroporous Nanostructures for Simultaneous Removal of as (Iii) and F in a Groundwater System. Environ. Sci.: Nano. 2016, 3, 1416–1424. DOI: 10.1039/C6EN00400H.
  • Qin, Y.; Chen, P.; Duan, J.; Han, J.; Lou, H.; Zheng, X.; Hong, H. Carbon Nanofibers Supported Molybdenum Carbide Catalysts for Hydrodeoxygenation of Vegetable Oils. RSC Adv. 2013, 3, 17485–17491. DOI: 10.1039/c3ra42434k.
  • Yoshida, H.; Shimizu, T.; Uchiyama, T.; Kohno, H.; Homma, Y.; Takeda, S. Atomic-Scale Analysis on the Role of Molybdenum in Iron-Catalyzed Carbon Nanotube Growth. Nano Lett. 2009, 9, 3810–3815.
  • Zhou, L.-P.; Ohta, K.; Kuroda, K.; Lei, N.; Matsuishi, K.; Gao, L.; Matsumoto, T.; Nakamura, J. Catalytic Functions of Mo/Ni/MgO in the Synthesis of Thin Carbon Nanotubes. J. Phys. Chem. B. 2005, 109, 4439–4447. DOI: 10.1021/jp045284e.
  • Lin, M.; Tan, J. P. Y.; Boothroyd, C.; Loh, K. P.; Tok, E. S.; Foo, Y.-L. Direct Observation of Single-Walled Carbon Nanotube Growth at the Atomistic Scale. Nano Lett. 2006, 6, 449–452. DOI: 10.1021/nl052356k.
  • Gong, Q. M.; Li, Z.; Wang, Y.; Wu, B.; Zhang, Z.; Liang, J. The Effect of High-Temperature Annealing on the Structure and Electrical Properties of Well-Aligned Carbon Nanotubes. Mater. Res. Bull. 2007, 42, 474–481. DOI: 10.1016/j.materresbull.2006.06.023.
  • Chen, J. L.; Li, Y. D.; Ma, Y. M.; Qin, Y. N.; Chang, L. Formation of Bamboo-Shaped Carbon Filaments and Dependence of Their Morphology on Catalyst Composition and Reaction Conditions. Carbon. 2001, 39, 1467–1475. DOI: 10.1016/S0008-6223(00)00274-8.
  • Mac Kenzie, K. J.; Dunens, O. M.; Harris, A. T. An Updated Review of Synthesis Parameters and Growth Mechanisms for Carbon Nanotubes in Fluidized Beds. Ind. Eng. Chem. Res. 2010, 49, 5323–5338. DOI: 10.1021/ie9019787.
  • Awadallah, A. E.; Deyab, M. A.; Ahmed, H. A. Mo/MgO as an Efficient Catalyst for Methane Decomposition into COx-Free Hydrogen and Multi-Walled Carbon Nanotubes. J. Environ. Chem. Eng. 2021, 9, 106023. DOI: 10.1016/j.jece.2021.106023.
  • Takenaka, S.; Ishida, M.; Serizawa, M.; Tanabe, E.; Otsuka, K. Formation of Carbon Nanofibers and Carbon Nanotubes through Methane Decomposition over Supported Cobalt Catalysts. J. Phys. Chem. B. 2004, 108, 11464–11472. DOI: 10.1021/jp048827t.
  • Hao, Y.; Wang, Y.; Wang, L.; Ni, Z.; Wang, Z.; Wang, R.; Koo, C. K.; Shen, Z.; Thong, J. T. L. Probing Layer Number and Stacking Order of Few-Layer Graphene by Raman Spectroscopy. Small. 2010, 6, 195–200. DOI: 10.1002/smll.200901173.
  • Awadallah, A. E.; El-Desouki, D. S.; Aboul-Gheit, N. A. K.; Ibrahim, A. H.; Ahmed, K.; Aboul-Gheit, A. K. Effect of Crystalline Structure and Pore Geometry of Silica Based Supported Materials on the Catalytic Behavior of Metallic Nickel Particles during Methane Decomposition to COx-Free Hydrogen and Carbon Nanomaterials. Int. J. Hydrogen Energy. 2016, 41, 16890–16902. DOI: 10.1016/j.ijhydene.2016.07.081.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.