198
Views
0
CrossRef citations to date
0
Altmetric
Articles

Improvement of mechanical and thermal properties of polylactic acid electrospun films by incorporating L-Lactide functionalized cellulose nanocrystals

, , , &
Pages 395-403 | Received 05 Dec 2022, Accepted 08 Jan 2023, Published online: 19 Jan 2023

References

  • Li, M.; Hou, Z.; Meng, R.; Hao, S.; Wang, B. Unraveling the Potential Human Health Risks from Used Disposable Face Mask-Derived Micro/Nanoplastics during the COVID-19 Pandemic Scenario: A Critical Review. Environ. Int. 2022, 170, 107644. DOI: 10.1016/j.envint.2022.107644.
  • Shen, M.; Zeng, Z.; Song, B.; Yi, H.; Hu, T.; Zhang, Y.; Zeng, G.; Xiao, R. Neglected microplastics Pollution in Global COVID-19: Disposable Surgical Masks. Sci. Total Environ. 2021, 790, 148130. DOI: 10.1016/j.scitotenv.2021.148130.
  • Patel, D. K.; Dutta, S. D.; Hexiu, J.; Ganguly, K.; Lim, K. T. Bioactive electrospun Nanocomposite Scaffolds of Poly(Lactic Acid)/Cellulose Nanocrystals for Bone Tissue Engineering. Int. J. Biol. Macromol. 2020, 162, 1429–1441. DOI: 10.1016/j.ijbiomac.2020.07.246.
  • Jamaluddin, N.; Kanno, T.; Asoh, T.-A.; Uyama, H. Surface modification of Cellulose Nanofiber Using Acid Anhydride for Poly(Lactic Acid) Reinforcement. Mater. Today Commun. 2019, 21, 100587. DOI: 10.1016/j.mtcomm.2019.100587.
  • Johari, A. P.; Mohanty, S.; Kurmvanshi, S. K.; Nayak, S. K. Influence of Different Treated Cellulose Fibers on the Mechanical and Thermal Properties of Poly(Lactic Acid). ACS Sustainable Chem. Eng. 2016, 4, 1619–1629. DOI: 10.1021/acssuschemeng.5b01563.
  • Macke, N.; Hemmingsen, C. M.; Rowan, S. J. The effect of Polymer Grafting on the Mechanical Properties of PEG‐Grafted Cellulose Nanocrystals in Poly(Lactic Acid). J. Poly. Sci. 2022, 60, 3318–3330. DOI: 10.1002/pol.20220127.
  • Zhai, S.; Liu, Q.; Zhao, Y.; Sun, H.; Yang, B.; Weng, Y. A Review: Research Progress in Modification of Poly (Lactic Acid) by Lignin and Cellulose. Polymers 2021, 13, 776. DOI: 10.3390/polym13050776.
  • Zych, A.; Perotto, G.; Trojanowska, D.; Tedeschi, G.; Bertolacci, L.; Francini, N.; Athanassiou, A. Super Tough Polylactic Acid Plasticized with Epoxidized Soybean Oil Methyl Ester for Flexible Food Packaging. ACS Appl. Polym. Mater. 2021, 3, 5087–5095. DOI: 10.1021/acsapm.1c00832.
  • Wu, H.; Nagarajan, S.; Zhou, L.; Duan, Y.; Zhang, J. Synthesis and Characterization of Cellulose Nanocrystal-Graft-Poly(d-Lactide) and Its Nanocomposite with Poly(l-Lactide). Polymer 2016, 103, 365–375. DOI: 10.1016/j.polymer.2016.09.070.
  • Karimpour‐Motlagh, N.; Khonakdar, H. A.; Jafari, S. H.; Panahi‐Sarmad, M.; Javadi, A.; Shojaei, S.; Goodarzi, V. An experimental and Theoretical Mechanistic Analysis of Thermal Degradation of Polypropylene/Polylactic Acid/Clay Nanocomposites. Polym. Adv. Technol. 2019, 30, 2695–2706. DOI: 10.1002/pat.4699.
  • Yang, B.; Wang, D.; Chen, F.; Su, L.-F.; Miao, J.-B.; Chen, P.; Qian, J.-S.; Xia, R.; Liu, J.-W. Melting and Crystallization Behaviors of Poly(Lactic Acid) Modified with Graphene Acting as a Nucleating Agent. J. Macromol, Sci. B 2019, 58, 290–304. DOI: 10.1080/00222348.2018.1564222.
  • Liu, Y.; Yu, Y.; Wang, Q.; Xu, J.; Fan, X.; Wang, P.; Yuan, J. Biological–Chemical Modification of Cellulose Nanocrystal to Prepare Highly Compatible Chitosan-Based Nanocomposites. Cellulose 2019, 26, 5267–5279. DOI: 10.1007/s10570-019-02486-x.
  • Seraji, A. A.; Goharpey, F.; Khademzadeh Yeganeh, J. Highly crystallized and Tough Polylactic Acid through Addition of Surface Modified Cellulose Nanocrystals. J. Appl. Poly. Sci. 2022, 139, 4773–4784. DOI: 10.1002/app.52871.
  • Aliotta, L.; Gigante, V.; Coltelli, M. B.; Cinelli, P.; Lazzeri, A. Evaluation of Mechanical and Interfacial Properties of Bio-Composites Based on Poly(Lactic Acid) with Natural Cellulose Fibers. IJMS 2019, 20, 960. DOI: 10.3390/ijms20040960.
  • Mirzaei, E.; Ai, J.; Sorouri, M.; Ghanbari, H.; Verdi, J.; Faridi-Majidi, R. Functionalization of PAN-Based Electrospun Carbon Nanofibers by Acid Oxidation: Study of Structural, Electrical and Mechanical Properties. Fuller. Nanotub. Carb. Nanostruct. 2015, 23, 930–937. DOI: 10.1080/1536383X.2015.1020057.
  • Averianov, I. V.; Stepanova, M. A.; Gofman, I. V.; Nikolaeva, A. L.; Korzhikov-Vlakh, V. A.; Karttunen, M.; Korzhikova-Vlakh, E. G. Chemical modification of Nanocrystalline Cellulose for Improved Interfacial Compatibility with Poly(Lactic Acid). Mendeleev Commun. 2019, 29, 220–222. DOI: 10.1016/j.mencom.2019.03.036.
  • Lu, J.; Sun, C.; Yang, K.; Wang, K.; Jiang, Y.; Tusiime, R.; Yang, Y.; Fan, F.; Sun, Z.; Liu, Y.; et al. Properties of Polylactic Acid Reinforced by Hydroxyapatite Modified Nanocellulose. Polymers (Basel) 2019, 11, 1009. DOI: 10.3390/polym11061009.
  • Ren, Z.; Guo, R.; Bi, H.; Jia, X.; Xu, M.; Cai, L. Interfacial Adhesion of Polylactic Acid on Cellulose Surface: A Molecular Dynamics Study. ACS Appl. Mater. Interfa. 2020, 12, 3236–3244. DOI: 10.1021/acsami.9b20101.
  • Wang, Y.; Liu, S.; Wang, Q.; Ji, X.; Yang, G.; Chen, J.; Fatehi, P. Strong, Ductile and Biodegradable Polylactic Acid/Lignin-Containing Cellulose Nanofibril Composites with Improved Thermal and Barrier Properties. Ind. Crops Prod. 2021, 171, 113898. DOI: 10.1016/j.indcrop.2021.113898.
  • Yin, Y.; Ma, J.; Tian, X.; Jiang, X.; Wang, H.; Gao, W. Cellulose nanocrystals Functionalized with Amino-Silane and Epoxy-Poly(Ethylene Glycol) for Reinforcement and Flexibilization of Poly(Lactic Acid): Material Preparation and Compatibility Mechanism. Cellulose 2018, 25, 6447–6463. DOI: 10.1007/s10570-018-2033-7.
  • Oksman, K.; Mathew, A. P.; Bondeson, D.; Kvien, I. Manufacturing process of Cellulose Whiskers/Polylactic Acid Nanocomposites. Compos. Sci. Technol. 2006, 66, 2776–2784. DOI: 10.1016/j.compscitech.2006.03.002.
  • Gwon, J.-G.; Cho, H.-J.; Chun, S.-J.; Lee, S.; Wu, Q.; Lee, S.-Y. Physiochemical, Optical and Mechanical Properties of Poly(Lactic Acid) Nanocomposites Filled with Toluene Diisocyanate Grafted Cellulose Nanocrystals. RSC Adv. 2016, 6, 9438–9445. DOI: 10.1039/C5RA26337A.
  • Bagheriasl, D.; Safdari, F.; Carreau, P. J.; Dubois, C.; Riedl, B. Development of Cellulose Nanocrystal‐Reinforced Polylactide: A Comparative Study on Different Preparation Methods. Polym. Compos. 2019, 40, E342–E349. DOI: 10.1002/pc.24676.
  • Arslan, D.; Vatansever, E.; Sarul, D. S.; Kahraman, Y.; Gunes, G.; Durmus, A.; Nofar, M. Effect of Preparation Method on the Properties of Polylactide/Cellulose Nanocrystal Nanocomposites. Polym. Compos. 2020, 41, 4170–4180. DOI: 10.1002/pc.25701.
  • Chiu, W.-M.; Chang, Y.-A.; Kuo, H.-Y.; Lin, M.-H.; Wen, H.-C. A study of Carbon Nanotubes/Biodegradable Plastic Polylactic Acid Composites. J. Appl. Polym. Sci. 2008, 108, 3024–3030. DOI: 10.1002/app.27796.
  • Pluta, M.; Murariu, M.; Dechief, A.-L.; Bonnaud, L.; Galeski, A.; Dubois, P. Impact-Modified Polylactide-Calcium Sulfate Composites: Structure and Properties. J. Appl. Polym. Sci. 2012, 125, 4302–4315. DOI: 10.1002/app.36562.
  • Jiang, S.; Chen, Y.; Duan, G.; Mei, C.; Greiner, A.; Agarwal, S. Electrospun nanofiber Reinforced Composites: A Review. Polym. Chem. 2018, 9, 2685–2720. DOI: 10.1039/C8PY00378E.
  • Huan, S.; Liu, G.; Cheng, W.; Han, G.; Bai, L. Electrospun Poly(Lactic Acid)-Based Fibrous Nanocomposite Reinforced by Cellulose Nanocrystals: Impact of Fiber Uniaxial Alignment on Microstructure and Mechanical Properties. Biomacromolecules 2018, 19, 1037–1046. DOI: 10.1021/acs.biomac.8b00023.
  • Jiang, P.; Lu, J.; Li, K.; Chen, X.; Dan, R. Research on Hydrophobicity of Electrospun Fe3O4/PVDF Nanofiber Membranes under Different Preparation Conditions. Fuller. Nanotub. Carb. Nanostruct. 2020, 28, 381–386. DOI: 10.1080/1536383X.2019.1687453.
  • Kongprayoon, A.; Ross, G.; Limpeanchob, N.; Mahasaranon, S.; Punyodom, W.; Topham, P. D.; Ross, S. Bio-Derived and Biocompatible Poly(Lactic Acid)/Silk Sericin Nanogels and Their Incorporation within Poly(Lactide-co-Glycolide) Electrospun Nanofibers. Polym. Chem. 2022, 13, 3343–3357. DOI: 10.1039/D2PY00330A.
  • Zhou, C.; Shi, Q.; Guo, W.; Terrell, L.; Qureshi, A. T.; Hayes, D. J.; Wu, Q. Electrospun bio-Nanocomposite Scaffolds for Bone Tissue Engineering by Cellulose Nanocrystals Reinforcing Maleic Anhydride Grafted PLA. ACS Appl. Mater. Interfa. 2013, 5, 3847–3854. DOI: 10.1021/am4005072.
  • Li, T.; Ding, X.; Tian, L.; Hu, J.; Yang, X.; Ramakrishna, S. The control of Beads Diameter of Bead-on-String Electrospun Nanofibers and the Corresponding Release Behaviors of Embedded Drugs. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 74, 471–477. DOI: 10.1016/j.msec.2016.12.050.
  • Cheng, M.; Qin, Z.; Hu, S.; Dong, S.; Ren, Z.; Yu, H. Achieving Long-Term Sustained Drug Delivery for Electrospun Biopolyester Nanofibrous Membranes by Introducing Cellulose Nanocrystals. ACS Biomater. Sci. Eng. 2017, 3, 1666–1676. DOI: 10.1021/acsbiomaterials.7b00169.
  • Wang, Q.; Yang, Y.; Chen, X.; Shao, Z. Investigation of Rheological Properties and Conformation of Silk Fibroin in the Solution of AmimCl. Biomacromolecules 2012, 13, 1875–1881. DOI: 10.1021/bm300387z.
  • Dong, H.; Xu, Q.; Li, Y.; Mo, S.; Cai, S.; Liu, L. The synthesis of Biodegradable Graft Copolymer Cellulose-Graft-Poly(L-Lactide) and the Study of Its Controlled Drug Release. Colloid. Surf B Biointerfa. 2008, 66, 26–33. DOI: 10.1016/j.colsurfb.2008.05.007.
  • Zhang, C.; Salick, M. R.; Cordie, T. M.; Ellingham, T.; Dan, Y.; Turng, L.-S. Incorporation of Poly(Ethylene Glycol) Grafted Cellulose Nanocrystals in Poly(Lactic Acid) Electrospun Nanocomposite Fibers as Potential Scaffolds for Bone Tissue Engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 49, 463–471. DOI: 10.1016/j.msec.2015.01.024.
  • Duzyer Gebizli, S.; Cunayev, S.; Koral Koc, S.; Tezel, S.; Peksoz, A. Influence of Solvent System on the Optoelectrical Properties of PCL/Carbon Black Nanofibers. Fuller. Nanotub. Carb. Nanostruct. 2022, 30, 814–819. DOI: 10.1080/1536383X.2021.2025361.
  • Hu, H.; Xu, A.; Zhang, D.; Zhou, W.; Peng, S.; Zhao, X. High-Toughness Poly(Lactic Acid)/Starch Blends Prepared through Reactive Blending Plasticization and Compatibilization. Molecules 2020, 25, 5951. DOI: 10.3390/molecules25245951.
  • Wang, X.; Jia, Y.; Liu, Z.; Miao, J. Influence of the Lignin Content on the Properties of Poly(Lactic Acid)/lignin-Containing Cellulose Nanofibrils Composite Films. Polymers (Basel )2018, 10, 1013–3224. DOI: 10.3390/polym10091013.
  • Hossain, K. M. Z.; Ahmed, I.; Parsons, A. J.; Scotchford, C. A.; Walker, G. S.; Thielemans, W.; Rudd, C. D. Physico-Chemical and Mechanical Properties of Nanocomposites Prepared Using Cellulose Nanowhiskers and Poly(Lactic Acid). J. Mater. Sci. 2012, 47, 2675–2686. DOI: 10.1007/s10853-011-6093-4.
  • Jonoobi, M.; Harun, J.; Mathew, A. P.; Oksman, K. Mechanical properties of Cellulose Nanofiber (CNF) Reinforced Polylactic Acid (PLA) Prepared by Twin Screw Extrusion. Compos. Sci. Technol. 2010, 70, 1742–1747. DOI: 10.1016/j.compscitech.2010.07.005.
  • Lin, N.; Huang, J.; Chang, P. R.; Feng, J.; Yu, J. Surface Acetylation of Cellulose Nanocrystal and Its Reinforcing Function in Poly(Lactic Acid). Carbohydr. Polym. 2011, 83, 1834–1842. DOI: 10.1016/j.carbpol.2010.10.047.
  • Yang, Z.; Li, X.; Si, J.; Cui, Z.; Peng, K. Morphological, Mechanical and Thermal Properties of Poly(Lactic Acid) (PLA)/Cellulose Nanofibrils (CNF) Composites Nanofiber for Tissue Engineering. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 2019, 34, 207–215. DOI: 10.1007/s11595-019-2037-7.
  • Zhou, L.; He, H.; Li, M-c.; Huang, S.; Mei, C.; Wu, Q. Enhancing mechanical Properties of Poly(Lactic Acid) through Its in-Situ Crosslinking with Maleic Anhydride-Modified Cellulose Nanocrystals from Cottonseed Hulls. Ind. Crops Prod. 2018, 112, 449–459. DOI: 10.1016/j.indcrop.2017.12.044.
  • Wang, Y.; Liao, J.; Lu, J.; Chen, Z.; Gao, S.; Gan, L.; Huang, J. Regulating surface Molecular Structure of Cellulose Nanocrystals to Optimize Mechanical Reinforcement Effect on Hydrophobic Bio-Based Polyesters. Iran Polym. J. 2020, 29, 693–705. DOI: 10.1007/s13726-020-00832-6.
  • Favier, V.; Dendievel, R.; Canova, G.; Cavaille, J. Y.; Gilormini, P. Simulation and Modeling of Three-Dimensional Percolating Structures: Case of a Latex Matrix Reinforced by a Network of Cellulose Fibers. Acta Mater. 1997, 45, 1557–1565. DOI: 10.1016/S1359-6454(96)00264-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.