69
Views
0
CrossRef citations to date
0
Altmetric
Articles

Conversion of atmospheric residue into upgraded fuel and carbon adsorbent for the adsorptive desulfurization process

&
Pages 423-434 | Received 27 Oct 2022, Accepted 13 Dec 2022, Published online: 23 Jan 2023

References

  • Hamidi Zirasefi, M.; Khorasheh, F.; Ivakpour, J.; Mohammadzadeh, A. Improvement of the Thermal Cracking Product Quality of Heavy Vacuum Residue Using Solvent Deasphalting Pretreatment. Energ. Fuel. 2016, 30, 10322–10329. DOI: 10.1021/acs.energyfuels.6b02297.
  • Shin, S.; Lee, J. M.; Hwang, J. W.; Jung, H. W.; Nho, N. S.; Lee, K. B. Physical and Rheological Properties of Deasphalted Oil Produced from Solvent Deasphalting. Chem. Eng. J. 2014, 257, 242–247. DOI: 10.1016/j.cej.2014.07.037.
  • Silva, F.; Guimarães, M.; Seidl, P.; Garcia, M. Extraction and Characterization (Compositional and Thermal) of Asphaltenes from Brazilian Vacuum Residues. Braz. J. Petrol. Gas 2013, 7, 107–118.
  • Silva, J. M.; Oliveira, M. H.; Nosman, T.; Coriolano, A. C.; Fernandes, G. J.; Fernandes, V. J.; Araujo, A. S. Catalytic Distillation of an Atmospheric Petroleum Resid Using HZSM-5 and HY Zeolites. Pet. Sci. Technol. 2017, 35, 1938–1943.
  • Rocha, E.; Lopes, M.; Maciel, M.; Filho, R.; Medina, L. Recovery and Characterization of Petroleum Residues through the Molecular Distillation Process. Pet. Sci. Technol. 2014, 32, 2450–2457. DOI: 10.1080/10916466.2013.823449.
  • Castro, K. K.; Paulino, A. A.; Silva, E. F.; Chellappa, T.; Lago, M. B.; Fernandes, V. J.; Jr,.; Araujo, A. S. Effect of the AL-MCM-41 Catalyst on the Catalytic Pyrolysis of Atmospheric Petroleum Residue (ATR). J. Therm. Anal. Calorim. 2011, 106, 759–762. DOI: 10.1007/s10973-011-1353-8.
  • Elayane, J.; Bchitou, R.; Bouhaouss, A. Study of the Thermal Cracking during the Vacuum Distillation of Atmospheric Residue of Crude Oil. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Indus. 2017, 18, 61.
  • Ali, N. M.; Naife, T. M. Deasphalting of Atmospheric Iraqi Residue Using Different Solvents. J. Eng. 2021, 27, 17–27. DOI: 10.31026/j.eng.2021.05.02.
  • Esgair, K. K. The Catalytic Activity of Modified Zeolite Lanthanum on the Catalytic Cracking of Al-Duara Atmospheric Distillation Residue. J. Eng. 2016, 22, 36–48.
  • Kaminski, T.; Husein, M. M. Thermal Cracking of Atmospheric Residue versus Vacuum Residue. Fuel Process. Technol. 2018, 181, 331–339. DOI: 10.1016/j.fuproc.2018.10.014.
  • Shojaiepour, M.; Aminshahidy, B.; Dabir, B. Upgrading Atmospheric Residue by Simultaneous Employment of Ionic Liquid, Ultrasonic, and Thermal Cracking. Iran. J. Chem. Chem. Eng. Research Article 2022, 41, 1095–1105.
  • Marafi, A.; Hauser, A.; Stanislaus, A. Atmospheric Residue Desulfurization Process for Residual Oil Upgrading: An Investigation of the Effect of Catalyst Type and Operating Severity on Product Oil Quality. Energ. Fuels 2006, 20, 1145–1149. DOI: 10.1021/ef050395d.
  • Meng, X.; Xu, C.; Gao, J.; Li, L.; Liu, Z. Catalytic and Thermal Pyrolysis of Atmospheric Residue. Energ. Fuels 2009, 23, 65–69. DOI: 10.1021/ef8006867.
  • Nayyef, A. W.; Fadhil, A. B. Elimination of Dibenzothiophene from Model Gasoline by Binary Biowastes-Derived Activated Carbon. Chem. Eng. Technol. 2023, 46, 1–14. DOI: 10.1002/ceat.202200407.
  • Mguni, L. L.; Yao, Y.; Nkomzwayo, T.; Liu, X.; Hildebrandt, D.; Glasser, D. Desulphurization of Diesel Fuels Using Intermediate Lewis Acids Loaded on Activated Charcoal and Alumina. Chem. Eng. Commun. 2019, 206, 572–580. DOI: 10.1080/00986445.2018.1511983.
  • Hajjar, Z.; Kazemeini, M.; Rashidi, A.; Soltanali, S. Hydrodesulfurization catalysts Based on Carbon Nanostructures: A Review. Fuller. Nanot. Carbon Nanostruct. 2018, 26, 557–569. DOI: 10.1080/1536383X.2018.1470509.
  • Afsharpour, M.; Dini, Z. One-Pot Functionalization of Carbon Nanotubes by WO3/MoO3 Nanoparticles as Oxidative Desulfurization Catalysts. Fuller. Nanot. Carbon Nanostruct. 2019, 27, 198–205. DOI: 10.1080/1536383X.2018.1538132.
  • Mesdour, S. H.; Boufades, D.; Bousak, H.; Moussiden, A.; Benmabrouka, H.; Demim, S. Potential application of Carbon Nanospheres as Adsorbent for the Simultaneous Desulfurization and Demetallization of Transportations Fuels. Fuller. Nanot. Carbon Nanostruct. 2022, 30, 419–427. DOI: 10.1080/1536383X.2021.1947809.
  • Farzin, N.; Shams, E.; Amini, M. K.; Choolaei, M. Efficient desulfurization of Fuel with Functionalized Mesoporous Carbon CMK-3-O and Comparison Its Performance with Mesoporous Carbon CMK-3. Fuller. Nanot. Carbon Nanostruct. 2016, 24, 786–795. DOI: 10.1080/1536383X.2016.1242484.
  • Fadhil, A. B.; Saeed, H. N.; Saeed, L. I. Polyethylene terephthalate Waste‐Derived Activated Carbon for Adsorptive Desulfurization of Dibenzothiophene from Model Gasoline: Kinetics and Isotherms Evaluation. Asia‐Pacific J. Chem. Eng. 2021, 16, e2594. DOI: 10.1002/apj.2594.
  • Younis, S. A.; Mahmood, S. F.; Ibraheam, S. Y. Fadhil, A. B. Preparation, Characterization, and Desulfurization Performance of the Activated Carbon Prepared from Mixed Agro-Wastes: An Isothermal and Kinetic Study. Int. J. Env. Anal. Chem. 2022, 1–26. DOI: 10.1080/03067319.2022.2140414.
  • Hussein, A. A.; Fadhil, A. B. Kinetics and Isothermal Evaluations of Adsorptive Desulfurization of Dibenzothiophene over Mixed Bio-Wastes Derived Activated Carbon. Energ. Sour. Part A 2021, 1–21. DOI: 10.1080/15567036.2021.1895372.
  • Fadhil, A. B.; Kareem, B. A. Co-Pyrolysis of Mixed Date Pits and Olive Stones: Identification of Bio-Oil and the Production of Activated Carbon from Bio-Char. J. Anal. Appl. Pyrol. 2021, 158, 105249. DOI: 10.1016/j.jaap.2021.105249.
  • Mohammed-Taib, B. M.; Fadhil, A. B. Dibenzothiophene Capture from Model Fuel by Wild Mustard Stems Derived Activated Carbon: kinetics and Isothermal Evaluations. International Journal of Environmental Analytical Chemistry, 2021, 1–23. DOI: 10.1080/03067319.2021.1931158.
  • Thaligari, S.; Srivastava, V.; Prasad, B. Simultaneous Adsorptive Desulfurization and Denitrogenation by Zinc Loaded Activated Carbon: Optimization of Parameters. Petrol. Sci. Technol. 2015, 33, 1667–1675. DOI: 10.1080/10916466.2015.1089283.
  • Moosavi, E. S.; Dastgheib, S. A.; Karimzadeh, R. Adsorption of Thiophenic Compounds from Model Diesel Fuel Using Copper and Nickel Impregnated Activated Carbons. Energies 2012, 5, 4233–4250. DOI: 10.3390/en5104233.
  • Lee, S. M.; Lee, S. H.; Park, S.; Yoon, S.-H.; Jung, D.-H. Preparation of Mesoporous Activated Carbon by Preliminary Oxidation of Petroleum Coke with Hydrogen Peroxide and Its Application in Capacitive Deionization. Desalination 2022, 539, 115901. DOI: 10.1016/j.desal.2022.115901.
  • Kawano, T.; Kubota, M.; Onyango, M. S.; Watanabe, F.; Matsuda, H. Preparation of Activated Carbon from Petroleum Coke by KOH Chemical Activation for Adsorption Heat Pump. Appl. Therm. Eng. 2008, 28, 865–871. DOI: 10.1080/15567036.2021.1895372.
  • Wu, M.; Zha, Q.; Qiu, J.; Han, X.; Guo, Y.; Li, Z.; Yuan, A.; Sun, X. Preparation of Porous Carbons from Petroleum Coke by Different Activation Methods. Fuel 2005, 84, 1992–1997. DOI: 10.1016/j.fuel.2005.03.008.
  • Fadhil, A. B. Production and Characterization of Liquid Biofuels from Locally Available Nonedible Feedstocks. Asia Pac. J. Chem. Eng. 2021, 16, e2572. DOI: 10.1002/apj.2572.
  • Daabo, A. M.; Saeed, L. I.; Altamer, M. H.; Fadhil, A. B.; Badawy, T. The Production of Bio-Based Fuels and Carbon Catalysts from Chicken Waste. Renewable Ener. 2022, 201, 21–34. DOI: 10.1016/j.renene.2022.10.088.
  • Li, G.; Li, J.; Tan, W.; Jin, H.; Yang, H.; Peng, J.; Barrow, C. J.; Yang, M.; Wang, H.; Yang, W. Preparation and Characterization of the Hydrogen Storage Activated Carbon from Coffee Shell by Microwave Irradiation and KOH Activation. Int. Biodeter. Biodegrad. 2016, 113, 386–390. DOI: 10.1016/j.ibiod.2016.05.003.
  • Aldobouni, I. A.; Fadhil, A. B.; Saied, I. K. Conversion of De-Oiled Castor Seed Cake into Bio-Oil and Carbon Adsorbents. Energy Sources. A 2015, 37, 2617–2624. DOI: 10.1080/15567036.2012.733482.
  • Zhang, G.; Yang, H.; Jiang, M.; Zhang, Q. Preparation and Characterization of Activated Carbon Derived from Deashing Coal Slime with ZnCl2 Activation. Colloids Surf, A 2022, 641, 128124. DOI: 10.1016/j.colsurfa.2021.128124.
  • Ahmaruzzaman, M.; Sharma, D. Characterization of Liquid Products Obtained from Cocracking of Petroleum Vacuum Residue with Plastics. Energ. Fuel. 2006, 20, 2498–2503. DOI: 10.1021/ef060070c.
  • Li, S.; Han, K.; Li, J.; Li, M.; Lu, C. Preparation and Characterization of Super Activated Carbon Produced from Gulfweed by KOH Activation. Micropor. Mesopor. Mater. 2017, 243, 291–300. DOI: 10.1016/j.micromeso.2017.02.052.
  • Wang, J.; Lei, S.; Liang, L. Preparation of Porous Activated Carbon from Semi-Coke by High Temperature Activation with KOH for the High-Efficiency Adsorption of Aqueous Tetracycline. Appl. Surf. Sci. 2020, 530, 147187. DOI: 10.1016/j.apsusc.2020.147187.
  • Kumar, D. P.; Ramesh, D.; Subramanian, P.; Karthikeyan, S.; Surendrakumar, A. Activated Carbon Production from Coconut Leaflets through Chemical Activation: Process Optimization Using Taguchi Approach. Bioresour. Technol. Rep. 2022, 19, 101155. DOI: 10.1016/j.biteb.2022.101155.
  • Patra, B. R.; Nanda, S.; Dalai, A. K.; Meda, V. Taguchi-Based Process Optimization for Activation of Agro-Food Waste Biochar and Performance Test for Dye Adsorption. Chemosphere 2021, 285, 131531. DOI: 10.1016/j.chemosphere.2021.131531.
  • da Silva, M. C.; Schnorr, C.; Lütke, S. F.; Knani, S.; Nascimento, V. X.; Lima, É. C.; Thue, P. S.; Vieillard, J.; Silva, L. F.; Dotto, G. L. KOH Activated Carbons from Brazil Nut Shell: Preparation, Characterization, and Their Application in Phenol Adsorption. Chem. Eng. Res. Des. 2022, 187, 387–396. DOI: 10.1016/j.cherd.2022.09.012.
  • Shen, F.; Wang, Y.; Li, L.; Zhang, K.; Smith, R. L.; Qi, X. Porous Carbonaceous Materials from Hydrothermal Carbonization and KOH Activation of Corn Stover for Highly Efficient CO2 Capture. Chem. Eng. Commun. 2018, 205, 423–443. DOI: 10.1080/00986445.2017.136767.
  • Zhang, W.-Q.; Sui, X.; Yu, B.; Shen, Y.-Q.; Cong, H.-L. Preparation of High Specific Surface Area and High Adsorptive Activated Carbon by KOH Activation. Integr. Ferroelectr. 2019, 199, 22–29. DOI: 10.1080/10584587.2019.1592594.
  • Ndifreke, W. E.; Pasaoglulari Aydinlik, N. KOH Modified Thevetia Peruviana Shell Activated Carbon for Sorption of Dimethoate from Aqueous Solution. J. Environ. Sci. Health. B 2019, 54, 1–13. DOI: 10.1080/03601234.2018.1501143.
  • Ma, C.; Chen, X.; Long, D.; Wang, J.; Qiao, W.; Ling, L. High-Surface-Area and High-Nitrogen-Content Carbon Microspheres Prepared by a Pre-Oxidation and Mild KOH Activation for Superior Supercapacitor. Carbon 2017, 118, 699–708. DOI: 10.1016/j.carbon.2017.03.075.
  • Shen, J.; Shahid, S.; Amura, I.; Sarihan, A.; Tian, M.; Emanuelsson, E. A. Enhanced adsorption of Cationic and Anionic Dyes from Aqueous Solutions by Polyacid Doped Polyaniline. Synth. Met. 2018, 245, 151–159. DOI: 10.1016/j.synthmet.2018.08.015.
  • Nayak, A. K.; Pal, A. Statistical modeling and Performance Evaluation of Biosorptive Removal of Nile Blue a by Lignocellulosic Agricultural Waste under the Application of High-Strength Dye Concentrations. J. Environ. Chem. Eng. 2020, 8, 103677. DOI: 10.1016/j.jece.2020.103677.
  • Shcherban, N. D.; Yaremov, P. S.; Ilyin, V. G.; Ovcharova, M. V. Influence of the Method of Activation on the Structural and Sorption Properties of the Products of Carbonization of Sucrose. J. Anal. Appl. Pyrolysis 2014, 107, 155–164. DOI: 10.1016/j.jaap.2014.02.016.
  • Azam, K.; Raza, R.; Shezad, N.; Shabir, M.; Yang, W.; Ahmad, N.; Shafiq, I.; Akhter, P.; Razzaq, A.; Hussain, M. Development of Recoverable Magnetic Mesoporous Carbon Adsorbent for Removal of Methyl Blue and Methyl Orange from Wastewater. J. Environ. Chem. Eng. 2020, 8, 104220. DOI: 10.1016/j.jece.2020.104220.
  • Fouad, K.; Omar el, F. B. Removal of Methyl Orange from Aqueous Solution via Adsorption on Cork as a Natural and Low-Coast Adsorbent: equilibrium, Kinetic and Thermodynamic Study of Removal Process. Desalin. Water Treat. 2014, 53, 3711–3723. DOI: 10.1080/19443994.2014.995136.
  • Yaseen, M.; Ullah, S.; Ahmad, W.; Subhan, S.; Subhan, F. Fabrication of Zn and Mn Loaded Activated Carbon Derived from Corn Cobs for the Adsorptive Desulfurization of Model and Real Fuel Oils. Fuel 2021, 284, 119102. DOI: 10.1016/j.fuel.2020.119102.
  • Shah, S. S.; Ahmad, I.; Ahmad, W. Adsorptive desulphurization Study of Liquid Fuels Using Tin (Sn) Impregnated Activated Charcoal. J. Hazard. Mater. 2016, 304, 205–213. DOI: 10.1016/j.jhazmat.2015.10.046.
  • Wang, J.; Zhang, Q.; Yang, H.; Qiao, C. Adsorptive desulfurization of Organic Sulfur from Model Fuels by Active Carbon Supported Mn (II): Equilibrium, Kinetics, and Thermodynamics. Int. J. Chem. Eng. 2020, 2020, 1–12. DOI: 10.1155/2020/2813946.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.