330
Views
0
CrossRef citations to date
0
Altmetric
Articles

Mechanical and tribological characterization of graphene nanoplatelets/Al2O3 reinforced epoxy hybrid composites

ORCID Icon, ORCID Icon & ORCID Icon
Pages 435-447 | Received 12 Dec 2022, Accepted 22 Jan 2023, Published online: 03 Feb 2023

References

  • Ahmad, S.; Ali, S.; Salman, M.; Baluch, A. H. A Comparative Study on the Effect of Carbon-Based and Ceramic Additives on the Properties of Fiber Reinforced Polymer Matrix Composites for High Temperature Applications. Ceram. Int. 2021, 47, 33956–33971. DOI: 10.1016/j.ceramint.2021.08.356.
  • Zayed, A. S.; Kamel, B. M.; Abdelsadek Osman, T.; Elkady, O. A.; Ali, S. Experimental Study of Tribological and Mechanical Properties of Aluminum Matrix Reinforced by Al2O3/CNTs. Fuller. Nanotub. Carbon Nanostructures 2019, 27, 538–544. DOI: 10.1080/1536383X.2019.1612882.
  • Upadhyay, R. K.; Kumar, A. Effect of Particle Weight Concentration on the Lubrication Properties of Graphene Based Epoxy Composites. Colloid Interface Sci. Commun. 2019, 33, 100206. DOI: 10.1016/j.colcom.2019.100206.
  • Kangishwar, S.; Radhika, N.; Sheik, A. A.; Chavali, A.; Hariharan, S. A Comprehensive Review on Polymer Matrix Composites: Material Selection, Fabrication, and Application. Polym. Bull. 2023, 80, 47–87. DOI: 10.1007/s00289-022-04087-4.
  • Naous, W.; Yu, X. Y.; Zhang, Q. X.; Naito, K.; Kagawa, Y. Morphology, Tensile Properties, and Fracture Toughness of Epoxy/Al2O3 Nanocomposites. J. Polym. Sci. B Polym. Phys. 2006, 44, 1466–1473. DOI: 10.1002/polb.20800.
  • Bao, C.; Guo, Y.; Song, L.; Hu, Y. Poly (Vinyl Alcohol) Nanocomposites Based on Graphene and Graphite Oxide: A Comparative İnvestigation of Property and Mechanism. J. Mater. Chem. 2011, 21, 13942–13950. DOI: 10.1039/c1jm11662b.
  • Wan, Y.-J.; Tang, L.-C.; Yan, D.; Zhao, L.; Li, Y.-B.; Wu, L.-B.; Jiang, J.-X.; Lai, G.-Q. Improved Dispersion and İnterface in the Graphene/Epoxy Composites via a Facile Surfactant-Assisted Process. Compos. Sci. Technol. 2013, 82, 60–68. DOI: 10.1016/j.compscitech.2013.04.009.
  • Colak, O.; Cakir, Y. Material Model Parameter Estimation with Genetic Algorithm Optimization Method and Modeling of Strain and Temperature Dependent Behavior of Epoxy Resin with cooperative-VBO Model. Mech. Mater. 2019, 135, 57–66. DOI: 10.1016/j.mechmat.2019.04.023.
  • Domun, N.; Hadavinia, H.; Zhang, T.; Sainsbury, T.; Liaghat, G.; Vahid, S. Improving the Fracture Toughness and the Strength of Epoxy Using Nanomaterials–A Review of the Current Status. Nanoscale 2015, 7, 10294–10329. DOI: 10.1039/c5nr01354b.
  • Chandrasekaran, S.; Sato, N.; Tölle, F.; Mülhaupt, R.; Fiedler, B.; Schulte, K. Fracture Toughness and Failure Mechanism of Graphene Based Epoxy Composites. Compos. Sci. Technol. 2014, 97, 90–99. DOI: 10.1016/j.compscitech.2014.03.014.
  • Du, Y.; Zhang, Z.; Wang, D.; Zhang, L.; Cui, J.; Chen, Y.; Wu, M.; Kang, R.; Lu, Y.; Yu, J.; Jiang, N. Enhanced tribological Properties of Aligned Graphene-Epoxy Composites. Friction 2022, 10, 854–865. DOI: 10.1007/s40544-021-0496-2.
  • Wang, Z. Z.; Gu, P.; Zhang, Z.; Gu, L.; Xu, Y. Z. Mechanical and Tribological Behavior of Epoxy/Silica Nanocomposites at the Micro/Nano Scale. Tribol. Lett. 2011, 42, 185–191. DOI: 10.1007/s11249-011-9762-1.
  • Kesavulu, A.; Mohanty, A. Compressive Performance and Thermal Stability of Alumina—Graphene Nanoplatelets Reinforced Epoxy Nanocomposites. Mater. Res. Express 2019, 6, 125329. DOI: 10.1088/2053-1591/ab58e3.
  • Shen, L.; Zhang, X.; Li, H.; Yuan, C.; Cao, G. Design and Tailoring of a Three-Dimensional TiO2–Graphene–Carbon Nanotube Nanocomposite for Fast Lithium Storage. J. Phys. Chem. Lett. 2011, 2, 3096–3101. DOI: 10.1021/jz201456p.
  • Galpaya, D.; Wang, M.; George, G.; Motta, N.; Waclawik, E.; Yan, C. Preparation of Graphene Oxide/Epoxy Nanocomposites with Significantly İmproved Mechanical Properties. J. Appl. Phys. 2014, 116, 053518. DOI: 10.1063/1.4892089.
  • Bazrgari, D.; Moztarzadeh, F.; Sabbagh-Alvani, A.; Rasoulianboroujeni, M.; Tahriri, M.; Tayebi, L. Mechanical Properties and Tribological Performance of Epoxy/Al2O3 Nanocomposite. Ceram. Int. 2018, 44, 1220–1224. DOI: 10.1016/j.ceramint.2017.10.068.
  • Cotul, U.; Parmak, E.; Kaykilarli, C.; Saray, O.; Colak, O.; Uzunsoy, D. Development of high purity, few-layer graphene synthesis by electric arc discharge technique. 2018.
  • Kaykılarlı, C.; Uzunsoy, D.; Parmak, E. D. Ş.; Fellah, M. F.; Çakır, Ö. Ç. Boron and Nitrogen Doping in Graphene: An Experimental and Density Functional Theory (DFT) Study. Nano Ex. 2020, 1, 010027. DOI: 10.1088/2632-959X/ab89e9.
  • Zheng, Y.; Xu, H.; Jing, H.; Ren, Q.; Liu, Z.; Gao, Z.; Ban, Q. Graphene Dispersed by Pyrene‐Terminated Polyethylene Glycol for Reinforced Epoxy Composites. J. Appl. Polym. Sci. 2022, 139, 52110. DOI: 10.1002/app.52110.
  • Kaykilarli, C.; Altinisik, Z.; Kilic, E.; Uzunsoy, D.; Yeprem, H. Aluminium Oxide (Al2O3)-Few Layer Graphene (FLG) Reinforced Aluminium Hybrid Composites. Compos Theory Pract. 2022, 22, 2.
  • Kaykılarlı, C.; Küçükelyas, B.; Akçamlı, N.; Uzunsoy, D.; Cansever, N. Processing and Characterization of Al-4Cu Matrix Composites Reinforced with Few Layered Graphene. Trans. Indian Inst. Met. 2022, 75, 2379–2388. DOI: 10.1007/s12666-022-02606-5.
  • Baig, Z.; Mamat, O.; Mustapha, M.; Sarfraz, M. Influence of Surfactant Type on the Dispersion State and Properties of Graphene Nanoplatelets Reinforced Aluminium Matrix Nanocomposites. Fuller. Nanotub. Carbon Nanostructures 2017, 25, 545–557. DOI: 10.1080/1536383X.2017.1362396.
  • Colak, O. U.; Birkan, B.; Bakbak, O.; Acar, A.; Uzunsoy, D. Functionalized Graphene–Epoxy Nanocomposites: Experimental İnvestigation of Viscoelastic and Viscoplastic Behaviors. Mech. Time-Depend. Mater. 2022, 1–21. DOI: 10.1007/s11043-021-09530-z.
  • Ouyang, Y.; Bai, L.; Tian, H.; Li, X.; Yuan, F. Recent Progress of Thermal Conductive Ploymer Composites: Al2O3 Fillers, Properties and Applications. Compos. Part A: Appl. Sci. Manufact. 2022, 152, 106685. DOI: 10.1016/j.compositesa.2021.106685.
  • Kesavulu, A.; Mohanty, A. Tribological characterization of Graphene Nanoplatelets/Alumina Particles Filled Epoxy Hybrid Nanocomposites. J. Appl. Polym. Sci. 2020, 137, 49518. DOI: 10.1002/app.49518.
  • Akhtar, M. W.; Lee, Y. S.; Yoo, D. J.; Kim, J. S. Alumina-Graphene Hybrid Filled Epoxy Composite: Quantitative Validation and Enhanced Thermal Conductivity. Compos. Part B: Eng. 2017, 131, 184–195. DOI: 10.1016/j.compositesb.2017.07.067.
  • Osman, A.; Elhakeem, A.; Kaytbay, S.; Ahmed, A. Thermal, Electrical and Mechanical Properties of Graphene/Nano-Alumina/Epoxy Composites. Mater. Chem. Phys. 2021, 257, 123809. DOI: 10.1016/j.matchemphys.2020.123809.
  • Akçamlı, N.; Şenyurt, B.; Gökçe, H.; Ağaoğulları, D. Powder Metallurgical Fabrication of Graphene Reinforced near-Eutectic Al-Si Matrix Composites: Microstructural, Mechanical and Electrochemical Characterization. Eng. Sci. Techno. Int. J. 2022, 31, 101052. DOI: 10.1016/j.jestch.2021.08.009.
  • Wu, Y.; Wang, B.; Ma, Y.; Huang, Y.; Li, N.; Zhang, F.; Chen, Y. Efficient and Large-Scale Synthesis of Few-Layered Graphene Using an Arc-Discharge Method and Conductivity Studies of the Resulting Films. Nano Res. 2010, 3, 661–669. DOI: 10.1007/s12274-010-0027-3.
  • Singh, S. K.; Akhtar, M.; Kar, K. K. Impact of Al2O3, TiO2, ZnO and BaTiO3 on the Microwave Absorption Properties of Exfoliated Graphite/Epoxy Composites at X-Band Frequencies. Compos. Part B: Eng. 2019, 167, 135–146. DOI: 10.1016/j.compositesb.2018.12.012.
  • Pimenta, M.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L.; Jorio, A.; Saito, R. Studying Disorder in Graphite-Based Systems by Raman Spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1291. DOI: 10.1039/b613962k.
  • Lewis, J. S.; Barani, Z.; Magana, A. S.; Kargar, F.; Balandin, A. A. Thermal and Electrical Conductivity Control in Hybrid Composites with Graphene and Boron Nitride Fillers. Mater. Res. Express 2019, 6, 085325. DOI: 10.1088/2053-1591/ab2215.
  • Shivakumar, H.; Renukappa, N.; Shivakumar, K.; Suresha, B. The Reinforcing Effect of Graphene on the Mechanical Properties of Carbon-Epoxy Composites. OJCM. 2020, 10, 27–44. DOI: 10.4236/ojcm.2020.102003.
  • Eqra, R.; Moghim, M. H.; Eqra, N. A Study on the Mechanical Properties of Graphene Oxide/Epoxy Nanocomposites. Polym. Polym. Compos. 2021, 29, S556–S564. DOI: 10.1177/09673911211011150.
  • Mondal, T.; Bhowmick, A. K.; Krishnamoorti, R. Chlorophenyl Pendant Decorated Graphene Sheet as a Potential Antimicrobial Agent: Synthesis and Characterization. J. Mater. Chem. 2012, 22, 22481–22487. DOI: 10.1039/c2jm33398h.
  • Kim, T.-H.; Jeon, E. K.; Ko, Y.; Jang, B. Y.; Kim, B.-S.; Song, H.-K. Enlarging the d-Spacing of Graphite and Polarizing İts Surface Charge for Driving Lithium İons Fast. J. Mater. Chem. A 2014, 2, 7600–7605. DOI: 10.1039/C3TA15360F.
  • Hussein, M. A.; Abu-Zied, B. M.; Asiri, A. M. Fabrication of EPYR/GNP/MWCNT Carbon-Based Composite Materials for Promoted Epoxy Coating Performance. RSC Adv. 2018, 8, 23555–23566. DOI: 10.1039/c8ra03109f.
  • Wan, Y.-J.; Gong, L.-X.; Tang, L.-C.; Wu, L.-B.; Jiang, J.-X. Mechanical properties of Epoxy Composites Filled with Silane-Functionalized Graphene Oxide. Compos. Part A: Appl. Sci. Manuf. 2014, 64, 79–89. DOI: 10.1016/j.compositesa.2014.04.023.
  • Lavoratti, A.; Zattera, A. J.; Amico, S. C. Mechanical and Dynamic‐Mechanical Properties of Silane‐Treated Graphite Nanoplatelet/Epoxy Composites. J. Appl. Polym. Sci. 2018, 135, 46724. DOI: 10.1002/app.46724.
  • Ozsoy, I.; Demirkol, A.; Mimaroglu, A.; Unal, H.; Demir, Z. The İnfluence of Micro-and Nano-Filler Content on the Mechanical Properties of Epoxy Composites. SV-JME. 2015, 61, 601–609. DOI: 10.5545/sv-jme.2015.2632.
  • Vaisakh, S. S.; Peer Mohammed, A. A.; Hassanzadeh, M.; Tortorici, J. F.; Metz, R.; Ananthakumar, S. Effect of Nano‐Modified SiO2/Al2O3 Mixed‐Matrix Micro‐Composite Fillers on Thermal, Mechanical, and Tribological Properties of Epoxy Polymers. Polym. Adv. Technol. 2016, 27, 905–914. DOI: 10.1002/pat.3747.
  • King, J. A.; Klimek, D. R.; Miskioglu, I.; Odegard, G. M. Mechanical Properties of Graphene Nanoplatelet/Epoxy Composites. J. Compos. Mater. 2015, 49, 659–668. DOI: 10.1177/0021998314522674.
  • Tay, C. H.; Norkhairunnisa, M. Mechanical Strength of Graphene Reinforced Geopolymer Nanocomposites: A Review. Front. Mater. 2021, 8, 276. DOI: 10.3389/fmats.2021.661013.
  • Rehman, S. K. U.; Ibrahim, Z.; Jameel, M.; Memon, S. A.; Javed, M. F.; Aslam, M.; Mehmood, K.; Nazar, S. Assessment of Rheological and Piezoresistive Properties of Graphene Based Cement Composites. Int. J. Concr. Struct. Mater. 2018, 12, 1–23. DOI: 10.1186/s40069-018-0293-0.
  • Majzoobi, G. H.; Nejad, S. H. A.; Sabet, S. A. R. Mechanical Characterization of Graphene Oxide Reinforced Epoxy at Different Strain Rates. Polym. Eng. Sci. 2019, 59, 1636–1647. DOI: 10.1002/pen.25162.
  • Mohanty, A.; Srivastava, V. Compressive Failure Analysis of Alumina Nano Particles Dispersed Short Glass/Carbon Fiber Reinforced Epoxy Hybrid Composites. Int. J. Sci. Eng. Res. 2012, 3, 1–7.
  • Wetzel, B.; Haupert, F.; Zhang, M. Q. Epoxy Nanocomposites with High Mechanical and Tribological Performance. Compos. Sci. Technol. 2003, 63, 2055–2067. DOI: 10.1016/S0266-3538(03)00115-5.
  • Singh, S.; Srivastava, V.; Prakash, R. Influences of Carbon Nanofillers on Mechanical Performance of Epoxy Resin Polymer. Appl. Nanosci. 2015, 5, 305–313. DOI: 10.1007/s13204-014-0319-0.
  • Hussein, S. I. On Mechanical and Thermal Properties of Epoxy/Graphene Nanocomposites. NHC. 2018, 22, 23–33. DOI: 10.4028/www.scientific.net/NHC.22.23.
  • Atif, R.; Shyha, I.; Inam, F. The Degradation of Mechanical Properties Due to Stress Concentration Caused by Retained Acetone in Epoxy Nanocomposites. RSC Adv. 2016, 6, 34188–34197. DOI: 10.1039/C6RA00739B.
  • Hawkins, D. A.; Jr,.; Haque, A. Fracture Toughness of Carbon-Graphene/Epoxy Hybrid Nanocomposites. Procedia Eng. 2014, 90, 176–181. DOI: 10.1016/j.proeng.2014.11.833.
  • Zuev, V. V. The Mechanisms and Mechanics of the Toughening of Epoxy Polymers Modified with Fullerene C60. Polym. Eng. Sci. 2012, 52, 2518–2522. DOI: 10.1002/pen.23211.
  • Lim, S.; Zeng, K.; He, C. Morphology, Tensile and Fracture Characteristics of Epoxy-Alumina Nanocomposites. Mater. Sci. Eng.: A 2010, 527, 5670–5676. DOI: 10.1016/j.msea.2010.05.038.
  • Wang, L.; Wang, K.; Chen, L.; Zhang, Y.; He, C. Preparation, Morphology and Thermal/Mechanical Properties of Epoxy/Nanoclay Composite. Compos. Part A: Appl. Sci. Manuf. 2006, 37, 1890–1896. DOI: 10.1016/j.compositesa.2005.12.020.
  • Zeng, C.; Lu, S.; Song, L.; Xiao, X.; Gao, J.; Pan, L.; He, Z.; Yu, J. Enhanced Thermal Properties in a Hybrid Graphene–Alumina Filler for Epoxy Composites. RSC Adv. 2015, 5, 35773–35782. DOI: 10.1039/C5RA01967B.
  • Wang, Y.; Yu, J.; Dai, W.; Song, Y.; Wang, D.; Zeng, L.; Jiang, N. Enhanced Thermal and Electrical Properties of Epoxy Composites Reinforced with Graphene Nanoplatelets. Polym. Compos. 2015, 36, 556–565. DOI: 10.1002/pc.22972.
  • Campo, M.; Jiménez-Suárez, A.; Ureña, A. Effect of Type, Percentage and Dispersion Method of Multi-Walled Carbon Nanotubes on Tribological Properties of Epoxy Composites. Wear 2015, 324-325, 100–108. DOI: 10.1016/j.wear.2014.12.013.
  • Kesavulu, A.; Mohanty, A. Tribological İnvestigation of Alumina/Graphene Nanoplatelets Reinforced Epoxy Nanocomposites. Mater. Res. Express 2020, 6, 125379. DOI: 10.1088/2053-1591/ab7de8.
  • He, Y.; Wu, D.; Zhou, M.; Liu, H.; Zhang, L.; Chen, Q.; Yao, B.; Yao, D.; Jiang, D.; Liu, C.; Guo, Z. Effect of MoO3/Carbon Nanotubes on Friction and Wear Performance of Glass Fabric-Reinforced Epoxy Composites under Dry Sliding. Appl. Surf. Sci. 2020, 506, 144946. DOI: 10.1016/j.apsusc.2019.144946.
  • Zhao, J.; Mao, J.; Li, Y.; He, Y.; Luo, J. Friction-İnduced Nano-Structural Evolution of Graphene as a Lubrication Additive. Appl. Surf. Sci. 2018, 434, 21–27. DOI: 10.1016/j.apsusc.2017.10.119.
  • Han, J.-H.; Zhang, H.; Chu, P.-F.; Imani, A.; Zhang, Z. Friction and Wear of High Electrical Conductive Carbon Nanotube Buckypaper/Epoxy Composites. Compos. Sci. Technol. 2015, 114, 1–10. DOI: 10.1016/j.compscitech.2015.03.012.
  • Wang, Q.; Wang, Y.; Wang, H.; Fan, N.; Yan, F. Experimental investigation on Tribological Behavior of Several Polymer Materials under Reciprocating Sliding and Fretting Wear Conditions. Tribol. Int. 2016, 104, 73–82. DOI: 10.1016/j.triboint.2016.08.030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.