97
Views
0
CrossRef citations to date
0
Altmetric
Articles

Study on the nano-morphology and chemical characteristics of soot produced by the combustion of kerosene mixed with ethanol

, , , &
Pages 482-488 | Received 30 Jan 2023, Accepted 13 Feb 2023, Published online: 22 Feb 2023

References

  • Chen, X. T.; Kang, S. C.; Yang, J. H. Investigation of Distribution, Transportation, and Impact Factors of Atmospheric Black Carbon in the Arctic Region Based on a Regional Climate-Chemistry Model. Environ. Pollut. 2020, 257, 113127. DOI: 10.1016/j.envpol.2019.113127.
  • Lu, Z.; Streets, D. G.; Winijkul, E.; Yan, F.; Chen, Y.; Bond, T. C.; Feng, Y.; Dubey, M. K.; Liu, S.; Pinto, J. P.; Carmichael, G. R. Light Absorption Properties and Radiative Effects of Primary Organic Aerosol Emissions. Environ. Sci. Technol. 2015, 49, 4868–4877. DOI: 10.1021/acs.est.5b00211.
  • Shiraiwa, M.; Selzle, K.; PÖSchl, U. Hazardous Components and Health Effects of Atmospheric Aerosol Particles: Reactive Oxygen Species, Soot, Polycyclic Aromatic Compounds and Allergenic Proteins. Free Radic. Res. 2012, 46, 927–939. DOI: 10.3109/10715762.2012.663084.
  • Verma, P.; Jafari, M.; Zare, A.; Pickering, E.; Guo, Y.; Osuagwu, C. G.; Stevanovic, S.; Brown, R.; Ristovski, Z. Soot Particle Morphology and Nanostructure with Oxygenated Fuels: A Comparative Study into Cold-Start and Hot-Start Operation. Environ. Pollut. 2021, 275, 116592. DOI: 10.1016/j.envpol.2021.116592.
  • Han, W.; Xiong, L.; Wang, M.; Seo, W.; Liu, Y.; Din, S. T. U.; Yang, W.; Liu, G. Interface Engineering via in-Situ Electrochemical Induced ZnSe for a Stabilized Zinc Metal Anode. Chem. Eng. J. 2022, 442, 136247. DOI: 10.1016/j.cej.2022.136247.
  • Wang, Y.; Chung, S. H. Soot Formation in Laminar Counterflow Flames. Prog. Energy Combust. Sci. 2019, 74, 152–238. DOI: 10.1016/j.pecs.2019.05.003.
  • Chong, C. T.; Cao, M. K.; Tian, B.; Xie, T. Measurements of Soot Particulate Emissions of Ammonia-Ethylene Flames Using Laser Extinction Method. Energies 2022, 15, 5209. DOI: 10.3390/en15145209.
  • Wei, J. J.; Wang, Y. C. Effects of Biodiesels on the Physicochemical Properties and Oxidative Reactivity of Diesel Particulates: A Review. Sci. Total. Environ. 2021, 788, 147753. DOI: 10.1016/j.scitotenv.2021.147753.
  • Jiaqiang, E.; Xu, W. R.; Ma, Y. J.; Tan, D. L.; Peng, Q. G.; Tan, Y.; Chen, L. H. Soot Formation Mechanism of Modern Automobile Engines and Methods of Reducing Soot Emissions: A Review. Fuel Process. Technol. 2022, 235, 107373. DOI: 10.1016/j.fuproc.2022.107373.
  • Han, W.; Chu, H.; Ya, Y.; Dong, S.; Zhang, C. Effect of Fuel Structure on Synthesis of Carbon Nanotubes in Diffusion Flames. Fuller. Nanotub. Carnon Nanostructures 2019, 27, 265–272. DOI: 10.1080/1536383X.2019.1567500.
  • Liang, G.; Li, S. S.; Yu, X. D.; Bu, Q. W.; Qu, H.; Zhu, H.; Yao, X. L.; Lu, A. X.; Gong, W. W. Black Carbon-Mediated Degradation of Organic Pollutants: A Critical Review. Process Saf. Environ. 2022, 160, 610–619. DOI: 10.1016/j.psep.2022.02.049.
  • Xu, L.; Wang, Y.; Liu, D. Effects of Oxygenated Biofuel Additives on Soot Formation: A Comprehensive Review of Laboratory-Scale Studies. Fuel 2022, 313, 122635. DOI: 10.1016/j.fuel.2021.122635.
  • Hansen, A. C.; Zhang, Q.; Lyne, P. W. L. Ethanol-Diesel Fuel Blends – A Review. Bioresour. Technol. 2005, 96, 277–285. DOI: 10.1016/j.biortech.2004.04.007.
  • Chu, H. Q.; Ya, Y. C.; Nie, X. K.; Qiao, F.; Jiaqiang, E. Effects of Adding Cyclohexane, n-Hexane, Ethanol, and 2,5-Dimethylfuran to Fuel on Soot Formation in Laminar Coflow n-Heptane/Iso-Octane Diffusion Flame. Combust. Flame 2021, 225, 120–135. DOI: 10.1016/j.combustflame.2020.10.030.
  • Liu, F. S.; Ai, Y. H.; Kong, W. J. Effect of Hydrogen and Helium Addition to Fuel on Soot Formation in an Axisymmetric Coflow Laminar Methane/Air Diffusion Flame. Int. J. Hydrogen Energ. 2014, 39, 3936–3946. DOI: 10.1016/j.ijhydene.2013.12.151.
  • Wang, Y.; Gu, M. Y.; Chao, L.; Wu, J. J.; Lin, Y. Y.; Huang, X. Y. Different Chemical Effect of Hydrogen Addition on Soot Formation in Laminar Coflow Methane and Ethylene Diffusion Flames. Int. J. Hydrogen Energ. 2021, 46, 16063–16074. DOI: 10.1016/j.ijhydene.2021.02.014.
  • Gu, M. Y.; Chu, H. Q.; Liu, F. S. Effects of Simultaneous Hydrogen Enrichment and Carbon Dioxide Dilution of Fuel on Soot Formation in an Axisymmetric Coflow Laminar Ethylene/Air Diffusion Flame. Combust. Flame 2016, 166, 216–228. DOI: 10.1016/j.combustflame.2016.01.023.
  • Xie, X. R.; Zheng, S.; Sui, R.; Luo, Z. X.; Liu, S.; Consalvi, J. L. Effects of Acetylene Addition to the Fuel Stream on Soot Formation and Flame Properties in an Axisymmetric Laminar Coflow Ethylene/Air Diffusion Flame. ACS Omega 2021, 6, 10371–10382. DOI: 10.1021/acsomega.1c00740.
  • Abdalla, A. O. G.; Liu, D.; Zhang, L.; Zhao, X.; Jiang, B.; He, X. Nanoscale Inspection on Carbon Particles from Commercial RP-3 Kerosene Combustion with Different Dilutions. Fuller Nanotub. Carbon Nanostructures 2020, 28, 959–972. DOI: 10.1080/1536383X.2020.1786817.
  • Sharma, H. N.; Pahalagedara, L.; Joshi, A.; Suib, S. L.; Mhadeshwar, A. B. Experimental Study of Carbon Black and Diesel Engine Soot Oxidation Kinetics Using Thermogravimetric Analysis. Energ. Fuel 2012, 26, 5613–5625. DOI: 10.1021/ef3009025.
  • Yehliu, K.; Vander Wal, R. L.; Armas, O.; Boehman, A. L. Impact of Fuel Formulation on the Nanostructure and Reactivity of Diesel Soot. Combust. Flame 2012, 159, 3597–3606. DOI: 10.1016/j.combustflame.2012.07.004.
  • Raj, A.; Yang, S. Y.; Cha, D.; Tayouo, R.; Chung, S. H. Structural Effects on the Oxidation of Soot Particles by O2: Experimental and Theoretical Study. Combust. Flame 2013, 160, 1812–1826. DOI: 10.1016/j.combustflame.2013.03.010.
  • Xia, M.; Guo, H. A One-Step Synthesis Method for Hollow Carbon Nano-Onions. Fuller. Nanotub. Carbon Nanostructures 2015, 23, 1091–1094. DOI: 10.1080/1536383X.2015.1073150.
  • Abid, A. D.; Tolmachoff, E. D.; Phares, D. J.; Wang, H.; Liu, Y.; Laskin, A. Size Distribution and Morphology of Nascent Soot in Premixed Ethylene Flames with and Without Benzene Doping. Proc. Combust. Inst. 2009, 32, 681–688. DOI: 10.1016/j.proci.2008.07.023.
  • Liu, D.; Liu, Y.; Liu, G. Effects of Carbon Nanotubes Additions on Flash Ignition Characteristics of Fe and Al Nanoparticles. Fuller. Nanotub. Carbon Nanostructures 2018, 26, 168–174. DOI: 10.1080/1536383X.2017.1420062.
  • Han, W.; Lee, H.; Liu, Y.; Kim, Y.; Chu, H.; Liu, G.; Yang, W. Toward Highly Reversible Aqueous Zinc-Ion Batteries: Nanoscale-Regulated Zinc Nucleation via Graphene Quantum Dots Functionalized with Multiple Functional Groups. Chem. Eng. J. 2023, 452, 139090. DOI: 10.1016/j.cej.2022.139090.
  • Han, W.; Liu, G.; Seo, W.; Lee, H.; Chu, H.; Yang, W. Nitrogen-Doped Chain-like Carbon Nanospheres with Tunable Interlayer Distance for Superior Pseudocapacitance-Dominated Zinc- and Potassium-Ion Storage. Carbon 2021, 184, 534–543. DOI: 10.1016/j.carbon.2021.08.060.
  • Dippel, B.; Jander, H.; Heintzenberg, J. NIR FT Raman Spectroscopic Study of Flame Soot. Phys. Chem. Chem. Phys. 1999, 20, 4707–4712. DOI: 10.1039/a904529e.
  • Guo, Y.; Ristovski, Z.; Graham, E.; Stevanovic, S.; Verma, P.; Jafari, M.; Brown, R. J. The Correlation Between Diesel Soot Chemical Structure and Reactivity. Carbon 2020, 161, 736–749. DOI: 10.1016/j.carbon.2020.01.061.
  • Lapuerta, M.; Rodríguez-Fernández, J.; Sánchez-Valdepeñas, J. Soot Reactivity Analysis and Implications on Diesel Filter Regeneration. Prog. Energy Combust. 2020, 78, 100833. DOI: 10.1016/j.pecs.2020.100833.
  • Stratakis, G. A.; Stamatelos, A. M. Thermogravimetric Analysis of Soot Emitted by a Modern Diesel Engine Run on Catalyst-Doped Fuel. Combust. Flame 2003, 132, 157–169. DOI: 10.1016/s0010-2180.
  • Meng, Z. W.; Yang, D.; Yan, Y. Study of Carbon Black Oxidation Behavior Under Different Heating Rates. J. Therm. Anal. Calorim. 2014, 118, 551–559. DOI: 10.1007/s10973-014-4020-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.