98
Views
0
CrossRef citations to date
0
Altmetric
Articles

Preparation of supported ultrafine platinum nanocatalysts by ethylene glycol assisted photochemical method and application of catalytic 4-NP

, , , , , & ORCID Icon show all
Pages 573-582 | Received 10 Jan 2023, Accepted 16 Mar 2023, Published online: 29 Mar 2023

References

  • Li, J.; Banis, M. N.; Ren, Z.; Adair, K. R.; Doyle-Davis, K.; Meira, D. M.; Finfrock, Y. Z.; Zhang, L.; Kong, F.; Sham, T. K.; et al. Unveiling the Nature of Pt Single-Atom Catalyst during Electrocatalytic Hydrogen Evolution and Oxygen Reduction Reactions. Small 2021, 17, e2007245. DOI: 10.1002/smll.202007245.
  • Wagner, M.; Waleska, N.; Gröhn, F. Hybrid Organic–Platinum Nanoparticles for Hydrogenation Reactions. ACS Appl. Nano Mater 2021, 4, 4329–4334. DOI: 10.1021/acsanm.1c00498.
  • Zhang, X.; Jin, S.; Zhang, Y.; Wang, L.; Liu, Y.; Duan, Q. One-Pot Facile Synthesis of Noble Metal Nanoparticles Supported on rGO with Enhanced Catalytic Performance for 4-Nitrophenol Reduction. Molecules 2021, 26, 7261. DOI: 10.3390/molecules26237261.
  • Hanan, A.; Ahmed, M.; Lakhan, M. N.; Shar, A. H.; Cao, D.; Asif, A.; Ali, A.; Gul, M. Novel rGO@Fe3O4 Nanostructures: An Active Electrocatalyst for Hydrogen Evolution Reaction in Alkaline Media. J. Indian Chem. Soc. 2022, 99, 100442. DOI: 10.1016/j.jics.2022.100442.
  • Singh, B. K.; Mahapatra, S. S. Performance Study of Palladium Modified Platinum Anode in Direct Ethanol Fuel Cells: A Green Power Source. J. Indian Chem. Soc. 2023, 100, 100876. DOI: 10.1016/j.jics.2022.100876.
  • Themsirimongkon, S.; Waenkaew, P.; Ounnunkad, K.; Jakmunee, J.; Fang, L.; Saipanya, S. Catalytic Electrooxidation of Formic Acid by Noble Metal Nanoparticle Catalysts on Reduced Graphene Oxide. Fullerenes, Nanotubes and Carbon Nanostruct. 2019, 27, 830–845. DOI: 10.1080/1536383X.2019.1628022.
  • Jahromi, M. P.; Moradi, S. E.; Nasrollahpour, A.; Moradi, S. M. J. FePt/Reduced Graphene Oxide Composites for High Capacity Hydrogen Storage. Fullerenes, Nanotubes and Carbon Nanostruct. 2017, 25, 295–300. DOI: 10.1080/1536383X.2017.1287699.
  • Kawawaki, T.; Shimizu, N.; Mitomi, Y.; Yazaki, D.; Hossain, S.; Negishi, Y. Supported, ∼1-nm-Sized Platinum Clusters: Controlled Preparation and Enhanced Catalytic Activity. BCSJ 2021, 94, 2853–2870. DOI: 10.1246/bcsj.20210311.
  • Ko, J. W.; Miyazawa, K. i.; Tanaka, Y.; Ko, W. B. Catalytic Activity of Hybrid Platinum Nanoparticle-[C60]Fullerene Nanowhisker Composites for 4-Nitrophenol Reduction. Fullerenes, Nanotubes and Carbon Nanostruct. 2020, 28, 794–798. DOI: 10.1080/1536383X.2020.1762078.
  • Xia, M.; Guo, H.-Y.; Wu, J.-L.; Hussain, M. I.; Zhang, N. A Versatile Route for the Synthesis of Pt-Loaded Mesoporous CNT Heterostructure. Fullerenes, Nanotubes and Carbon Nanostruct. 2020, 28, 377–380. DOI: 10.1080/1536383X.2019.1686362.
  • Zhang, Z.; Liu, J.; Gu, J.; Su, L.; Cheng, L. An Overview of Metal Oxide Materials as Electrocatalysts and Supports for Polymer Electrolyte Fuel Cells. Energy Environ. Sci. 2014, 7, 2535–2558. DOI: 10.1039/C3EE43886D.
  • Bogireddy, N. K. R.; Sahare, P.; Pal, U.; Méndez, S. F. O.; Gomez, L. M.; Agarwal, V. Platinum Nanoparticle-Assembled Porous Biogenic Silica 3D Hybrid Structures with Outstanding 4-Nitrophenol Degradation Performance. Chem. Engin. J. 2020, 388, 124237. DOI: 10.1016/j.cej.2020.124237.
  • Chao, G.; An, X.; Zhang, L.; Tian, J.; Fan, W.; Liu, T. Electron-Rich Platinum Electrocatalysts Supported onto Tin Oxides for Efficient Oxygen Reduction. Compos. Commun. 2021, 24, 100603. DOI: 10.1016/j.coco.2020.100603.
  • Lagarteira, T.; Delgado, S.; Fernandes, C.; Azenha, C.; Mateos-Pedrero, C.; Mendes, A. The Role of Pt Loading on Reduced Graphene Oxide Support in the Polyol Synthesis of Catalysts for Oxygen Reduction Reaction. Int. J. Hydrogen Energy 2020, 45, 20594–20604. DOI: 10.1016/j.ijhydene.2020.02.022.
  • Qin, Y.; Yang, X.; Li, R.; Chen, S.; Wang, Y.; Yu, Z.; Wang, Y.; Liu, X.; Tong, X. Carbon Nanoparticle Coated by Silicon Dioxide Supported Platinum Nanoparticles towards Oxygen Reduction Reaction. Mater. Res. Bull. 2021, 139, 111268. DOI: 10.1016/j.materresbull.2021.111268.
  • Weerathunga, D. T. D.; Fujigaya, T. The Relationship between Inherent Properties of Carbon Nanotubes and Electrochemical Durability of supported-Pt Catalysts. Diamond Relat. Mater. 2019, 97, 107459. DOI: 10.1016/j.diamond.2019.107459.
  • Álvarez Cerimedo, M. S.; Baronio, L. G.; Hoppe, C. E.; Ayude, M. A. The Effect of Poly(Vinylpyrrolidone) (PVP) on the Au Catalyzed Reduction of p–Nitrophenol: The Fundamental Role of NaBH4. ChemistrySelect 2019, 4, 608–616. DOI: 10.1002/slct.201803250.
  • Laghrib, F.; Houcini, H.; Khalil, F.; Liba, A.; Bakasse, M.; Lahrich, S.; El Mhammedi, M. A. Synthesis of Silver Nanoparticles Using Chitosan as Stabilizer Agent: Application towards Electrocatalytical Reduction of p‐Nitrophenol. ChemistrySelect 2020, 5, 1220–1227. DOI: 10.1002/slct.201903955.
  • Foudia, M.; Toukal, L.; Benghanem, F.; Aroui, L.; Djetoui, Z. Effect of Surfactant and Mineral Additive on the Efficiency of Lead-Acid Battery Positive Active Material. J. Indian Chem. Soc. 2022, 99, 100355. DOI: 10.1016/j.jics.2022.100355.
  • Loh, N. D.; Sen, S.; Bosman, M.; Tan, S. F.; Zhong, J.; Nijhuis, C. A.; Kral, P.; Matsudaira, P.; Mirsaidov, U. Multistep Nucleation of Nanocrystals in Aqueous Solution. Nat. Chem. 2017, 9, 77–82. DOI: 10.1038/nchem.2618.
  • Wei, H.; Huang, K.; Wang, D.; Zhang, R.; Ge, B.; Ma, J.; Wen, B.; Zhang, S.; Li, Q.; Lei, M.; et al. Iced Photochemical Reduction to Synthesize Atomically Dispersed Metals by Suppressing Nanocrystal Growth. Nat Commun 2017, 8, 1490. DOI: 10.1038/s41467-017-01521-4.
  • Xian, L.; Su, B.-Q.; Feng, Y.-X.; Xi, B.; Duan, Z.-Y. The Photochemical Effects of Visible Light on K2[PtCl4] Hydrolysis and the Synthesis of Pt Nano Catalysts. Inorganic and Nano-Metal Chem. 2021, 51, 882–888. DOI: 10.1080/24701556.2020.1812646.
  • Zhao, N.; Kong, L.; Dong, Y.; Wang, G.; Wu, X.; Jiang, P. Insight into the Crucial Factors for Photochemical Deposition of Cobalt Cocatalysts on g-C3N4 Photocatalysts. ACS Appl. Mater. Interfaces 2018, 10, 9522–9531. DOI: 10.1021/acsami.8b01590.
  • Saleh, T. A.; Gupta, V. K. Photo-Catalyzed Degradation of Hazardous Dye Methyl Orange by Use of a Composite Catalyst Consisting of Multi-Walled Carbon Nanotubes and Titanium Dioxide. J. Colloid Interface Sci. 2012, 371, 101–106. DOI: 10.1016/j.jcis.2011.12.038.
  • Ozdemir, O. K. A Novel Method to Produce Few Layers of Graphene as Support Materials for Platinum Catalyst. Chem. Pap. 2019, 73, 387–395. DOI: 10.1007/s11696-018-0588-2.
  • Titus, E.; Ali, N.; Cabral, G.; Gracio, J.; Babu, P. R.; Jackson, M. J. Chemically Functionalized Carbon Nanotubes and Their Characterization Using Thermogravimetric Analysis, Fourier Transform Infrared, and Raman Spectroscopy. J. Mater. Eng. Perform. 2006, 15, 182–186. DOI: 10.1361/105994906X95841.
  • Liu, W. W.; Aziz, A.; Chai, S. P.; Rahman Mohamed, A.; Hashim, U.; Lai, C. W. Synthesis of Fe3O4 Nanoparticles to Synthesize Bundles of Single-Walled Carbon Nanotubes. AMR 2015, 1109, 108–112. DOI: 10.4028/www.scientific.net/AMR.1109.108.
  • Kobashi, K.; Ata, S.; Yamada, T.; Futaba, D. N.; Okazaki, T.; Hata, K. Classification of Commercialized Carbon Nanotubes into Three General Categories as a Guide for Applications. ACS Appl. Nano Mater 2019, 2, 4043–4047. DOI: 10.1021/acsanm.9b00941.
  • Rahman, M. J.; Mieno, T. Functionalization of Single-Walled Carbon Nanotubes by Citric Acid/Oxygen Plasma Treatment. Fullerenes, Nanotubes and Carbon Nanostruct. 2017, 25, 519–525. DOI: 10.1080/1536383X.2017.1347639.
  • Dao, V.-D.; Ko, S. H.; Choi, H.-S.; Lee, J.-K. Pt-NP–MWNT Nanohybrid as a Robust and Low-Cost Counter Electrode Material for Dye-Sensitized Solar Cells. J. Mater. Chem. 2012, 22, 14023–14029. DOI: 10.1039/c2jm31332d.
  • Dao, V.-D.; Choi, H.-S. Dry Plasma Synthesis of a MWNT–Pt Nanohybrid as an Efficient and Low-Cost Counter Electrode Material for Dye-Sensitized Solar Cells. Chem. Commun. 2013, 49, 8910–8912. DOI: 10.1039/c3cc42151a.
  • Dao, V.-D.; Choi, H.-S. Balance between the Charge Transfer Resistance and Diffusion Impedance in a CNT/Pt Counter Electrode for Highly Efficient Liquid-Junction Photovoltaic Devices. Org. Electron. 2018, 58, 159–166. DOI: 10.1016/j.orgel.2018.03.046.
  • Dang, H.-L. T.; Tran, N. A.; Dao, V.-D.; Vu, N. H.; Quang, D. V.; Vu, H. H. T.; Nguyen, T. H.; Pham, T.-D.; Hoang, X.-C.; Nguyen, H. T.; Tuan, P. A. Carbon Nanotubes-Ruthenium as an Outstanding Catalyst for Triiodide Ions Reduction. Synth. Met. 2020, 260, 116299. DOI: 10.1016/j.synthmet.2020.116299.
  • Sun, Y.; Du, C.; An, M.; Du, L.; Tan, Q.; Liu, C.; Gao, Y.; Yin, G. Boron-Doped Graphene as Promising Support for Platinum Catalyst with Superior Activity towards the Methanol Electrooxidation Reaction. J. Power Sources 2015, 300, 245–253. DOI: 10.1016/j.jpowsour.2015.09.046.
  • Hoseini, S. J.; Rashidi, M.; Bahrami, M. Platinum Nanostructures at the Liquid–Liquid Interface: catalytic Reduction of p-Nitrophenol to p-Aminophenol. J. Mater. Chem. 2011, 21, 16170–16176. DOI: 10.1039/c1jm11814e.
  • Li, L.; Wang, L. L.; Johnson, D. D.; Zhang, Z.; Sanchez, S. I.; Kang, J. H.; Nuzzo, R. G.; Wang, Q.; Frenkel, A. I.; Li, J.; et al. Noncrystalline-to-Crystalline Transformations in Pt Nanoparticles. J Am Chem Soc. 2013, 135, 13062–13072. DOI: 10.1021/ja405497p.
  • Gabor, N. M.; Zhong, Z.; Bosnick, K.; Park, J.; McEuen, P. L. Extremely Efficient Multiple Electron-Hole Pair Generation in Carbon Nanotube Photodiodes. Science 2009, 325, 1367–1371. DOI: 10.1126/science.1176112.
  • Quintana, M.; Ke, X.; Van Tendeloo, G.; Meneghetti, M.; Bittencourt, C.; Prato, M. Light-Induced Selective Deposition of Au Nanoparticles on Single-Wall Carbon Nanotubes. ACS Nano 2010, 4, 6105–6113. DOI: 10.1021/nn101183y.
  • Yao, K. X.; Liu, X.; Zhao, L.; Zeng, H. C.; Han, Y. Site-Specific Growth of Au Particles on ZnO Nanopyramids under Ultraviolet Illumination. Nanoscale 2011, 3, 4195–4200. DOI: 10.1039/c1nr10685f.
  • Nguyen, V. H.; Shim, J.-J. Green Synthesis and Characterization of Carbon Nanotubes/Polyaniline Nanocomposites. J. Spectro. 2015, 2015, 1–9. DOI: 10.1155/2015/297804.
  • Hassan, K.; Iftekhar Uddin, A. S. M.; Chung, G.-S. Fast-Response Hydrogen Sensors Based on Discrete Pt/Pd Bimetallic Ultra-Thin Films. Sens. Actuators, B 2016, 234, 435–445. DOI: 10.1016/j.snb.2016.05.013.
  • Pongpichayakul, N.; Themsirimongkon, S.; Maturost, S.; Wangkawong, K.; Fang, L.; Inceesungvorn, B.; Waenkaew, P.; Saipanya, S. Cerium Oxide-Modified Surfaces of Several Carbons as Supports for a Platinum-Based Anode Electrode for Methanol Electro-Oxidation. Int. J. Hydrogen Energy 2021, 46, 2905–2916. DOI: 10.1016/j.ijhydene.2020.06.196.
  • Mazurkiewicz-Pawlicka, M.; Malolepszy, A.; Mikolajczuk-Zychora, A.; Mierzwa, B.; Borodzinski, A.; Stobinski, L. A Simple Method for Enhancing the Catalytic Activity of Pd Deposited on Carbon Nanotubes Used in Direct Formic Acid Fuel Cells. Appl. Surf. Sci. 2019, 476, 806–814. DOI: 10.1016/j.apsusc.2019.01.114.
  • Holzwarth, U.; Gibson, N. The Scherrer Equation versus the 'Debye-Scherrer Equation. Nat Nanotechnol 2011, 6, 534. DOI: 10.1038/nnano.2011.145.
  • Bogdanovskaya, V. A.; Radina, M. V.; Korchagin, O. V.; Kapustina, N. A.; Kazanskii, L. P. Carbon Nanotubes Modified with Oxygen- and Nitrogen-Containing Groups as Perspective Catalysts for the Oxygen Electroreduction Reaction. Russ J Electrochem 2020, 56, 809–820. DOI: 10.1134/S1023193520100043.
  • Kuang, H.; Cheng, Y.; Cui, C. Q.; Jiang, S. P. Carbon Nanotubes-Supported Pt Electrocatalysts for O(2) Reduction Reaction-Effect of Number of Nanotube Walls. J Nanosci Nanotechnol 2020, 20, 2736–2745. DOI: 10.1166/jnn.2020.17455.
  • Ismail, A. A.; Albukhari, S. M.; Mahmoud, M. Highly Efficient and Accelerated Photoreduction of Nitrobenzene over Visible-Light-Driven PtO@ Cr2O3 Nanocomposites. Surf. Interfaces 2021, 27, 101527. DOI: 10.1016/j.surfin.2021.101527.
  • Kim, Y. T.; Ohshima, K.; Higashimine, K.; Uruga, T.; Takata, M.; Suematsu, H.; Mitani, T. Fine Size Control of Platinum on Carbon Nanotubes: From Single Atoms to Clusters. Angew Chem Int Ed Engl 2006, 45, 407–411. DOI: 10.1002/anie.200501792.
  • Li, W.; Guo, Z.; Yang, J.; Li, Y.; Sun, X.; He, H.; Li, S.; Zhang, J. Advanced Strategies for Stabilizing Single-Atom Catalysts for Energy Storage and Conversion. Electrochem. Energy Rev. 2022, 5, 9. DOI: 10.1007/s41918-022-00169-z.
  • Chen, Z.; Zhang, P. Electronic Structure of Single-Atom Alloys and Its Impact on the Catalytic Activities. ACS Omega 2022, 7, 1585–1594. DOI: 10.1021/acsomega.1c06067.
  • Sypu, V. S.; Kera, N. H.; Bhaumik, M.; Raju, K.; Maity, A. Efficient Catalytic Reduction of Nitroaromatics by Recyclable 2-Naphthalene Sulfonic Acid Doped Polyaniline Nanotubes Decorated with NiFe2O4 Nanorods. Mater. Today Commun. 2021, 26, 101767. DOI: 10.1016/j.mtcomm.2020.101767.
  • Vilian, A. T. E.; Choe, S. R.; Giribabu, K.; Jang, S. C.; Roh, C.; Huh, Y. S.; Han, Y. K. Pd Nanospheres Decorated Reduced Graphene Oxide with Multi-Functions: Highly Efficient Catalytic Reduction and Ultrasensitive Sensing of Hazardous 4-Nitrophenol Pollutant. J. Hazard Mater. 2017, 333, 54–62. DOI: 10.1016/j.jhazmat.2017.03.015.
  • Xu, Y.; Shi, X.; Hua, R.; Zhang, R.; Yao, Y.; Zhao, B.; Liu, T.; Zheng, J.; Lu, G. Remarkably Catalytic Activity in Reduction of 4-Nitrophenol and Methylene Blue by Fe3O4@COF Supported Noble Metal Nanoparticles. Appl. Catal, B 2020, 260, 118142. DOI: 10.1016/j.apcatb.2019.118142.
  • Zhu, Y.; Wang, W. D.; Sun, X.; Fan, M.; Hu, X.; Dong, Z. Palladium Nanoclusters Confined in MOF@COP as a Novel Nanoreactor for Catalytic Hydrogenation. ACS Appl. Mater. Interfaces 2020, 12, 7285–7294. DOI: 10.1021/acsami.9b21802.
  • Majdoub, M.; Amedlous, A.; Anfar, Z.; Moussaoui, O. MoS2 Nanosheets/Silver Nanoparticles Anchored onto Textile Fabric as "Dip Catalyst" for Synergistic p-Nitrophenol Hydrogenation. Environ. Sci. Pollut. Res. Int. 2021, 28, 64674–64686. DOI: 10.1007/s11356-021-14882-7.
  • Song, C.; Guo, S.; Chen, L. Design and Characterization of Ag@Cu2O-rGO Nanocomposite for the p-Nitrophenol Reduction. Catalysts 2020, 11, 43. DOI: 10.3390/catal11010043.
  • Çıplak, Z.; Getiren, B.; Gökalp, C.; Yıldız, A.; Yıldız, N. Green Synthesis of Reduced Graphene oxide-AgAu Bimetallic Nanocomposite: Catalytic Performance. Chem. Eng. Commun. 2020, 207, 559–573. DOI: 10.1080/00986445.2019.1613227.
  • Çıplak, Z.; Getiren, B.; Gökalp, C.; Dinçer, C. A.; Yıldız, A.; Yıldız, N. Simultaneous Biosynthesis of Reduced Graphene oxide-Ag-Cu2O Nanostructures by Lichen Extract for Catalytic Reduction of Textile Dyes. Korean J. Chem. Eng. 2020, 37, 2216–2224. DOI: 10.1007/s11814-020-0640-0.
  • Çıplak, Z.; Gökalp, C.; Getiren, B.; Yıldız, A.; Yıldız, N. Catalytic Performance of Ag, Au and Ag-Au Nanoparticles Synthesized by Lichen Extract. Green Process. Synth, 2018, 7, 433–440. DOI: 10.1515/gps-2017-0074.
  • Xian, L.; Xi, B.; Ma, J.; Gao, X.; Yang, Y.; Li, W. Photochemical Freeze Synthesis of Ultrafine Platinum Nanocatalysts. Catal. Lett. 2022, 153, 338–347. DOI: 10.1007/s10562-022-03976-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.