70
Views
0
CrossRef citations to date
0
Altmetric
Articles

Encapsulating Ne inside C20H20. A molecular dynamics study on the stability of the endohedral system

ORCID Icon &
Pages 583-591 | Received 27 Feb 2023, Accepted 16 Mar 2023, Published online: 22 Mar 2023

References

  • Plato. Timaeus. ca. 350 B.C.
  • Paquette, L. A.; Ternansky, R. J.; Balogh, D. W.; Kentgen, G. Total Synthesis of Dodecahedrane. J. Am. Chem. Soc. 1983, 105, 5446–5450. DOI: 10.1021/ja00354a043.
  • Kroto, H. W.; Heath, J.; R; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. DOI: 10.1038/318162a0.
  • Kratschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Solid C60: A New Form of Carbon. Nature 1990, 347, 354–358. DOI: 10.1038/347354a0.
  • Novikov, P. V.; Osipova, I. V.; Churilov, G. N.; Dudnik, A. I. Simulation of Fullerene Formation in a Carbon-Helium Plasma. Fuller. Nanotub. Carbon Nanostruct. 2021, 29, 337–342. DOI: 10.1080/1536383X.2020.1842738.
  • Ōsawa, E. Formation Mechanism of C60 under Nonequilibrium and Irreversible Conditions—an Annotation. Fuller. Nanotub. Carbon Nanostruct. 2012, 20, 299–309. DOI: 10.1080/1536383X.2012.655104.
  • Marković, Z.; Todorović-Marković, B.; Nenadović, T. Synthesis of Fullerenes by Hollow Cathode Arc. Fuller. Nanotub. Carbon Nanostruct. 2002, 10, 81–87. DOI: 10.1081/FST-120002931.
  • Sheka, E. F.; Popova, N. A. Virtual Vibrational Spectrometer for sp2 Carbon Clusters and Dimers of Fullerene C60. Fuller. Nanotub. Carbon Nanostruct. 2022, 30, 777–786. DOI: 10.1080/1536383X.2022.2026331.
  • Sheka, E. F.; Popova, V. A. Virtual Vibrational Spectrometer for sp2 Carbon Clusters. 2. Fullerene C60 and Its Isomers. Fuller. Nanotub. Carbon Nanostruct. 2021, 29, 974–981. DOI: 10.1080/1536383X.2021.1922393.
  • Prylutskyy, Y. I.; Durov, S. S.; Bulavin, L. A.; Adamenko, I. I.; Moroz, K. O.; Graja, A.; Bogucki, A.; Scharf, P. Structure, Vibrational, and Calorical Properties of Fullerene C60 in Toluene Solution. Fullerene Sci. Technol. 2001, 9, 167–174. DOI: 10.1081/FST-100102964.
  • Cataldo, F.; Iglesias-Groth, S.; Garcia-Hernandez, D. A.; Manchado, A. Determination of the Integrated Molar Absorptivity and Molar Extinction Coefficient of Hydrogenated Fullerenes. Fuller. Nanotub. Carbon Nanostruct. 2013, 21, 417–428. DOI: 10.1080/1536383X.2011.629756.
  • Zakirova, A. D.; Sabirov, D. S. Volume of the Fullerene Cages of Endofullerenes and Hydrogenated Endofullerenes with Encapsulated Atoms of Noble Gases and Nonadditivity of Their Polarizability. Russ. J. Phys. Chem. 2020, 94, 963–971. DOI: 10.1134/S0036024420050283.
  • Bendikov, M.; Wudl, F.; Perepichka, D. F. Tetrathiafulvalenes, Oligoacenenes, and Their Buckminsterfullerene Derivatives: The Brick and Mortar of Organic Electronics. Chem. Rev. 2004, 104, 4891–4946. DOI: 10.1021/cr030666m.
  • Tutt, L. W.; Kost, A. Optical Limiting Performance of C60 and C70 Solutions. Nature 1992, 356, 225–226. DOI: 10.1038/356225a0.
  • Noormohammadbeigi, M.; Shamlouei, H. R. The Effect of Superalkali M3O (M = Li, Na and K) on Structure, Electrical and Nonlinear Optical Properties of C20 Fullerene Nanocluster. J. Inorg. Organomet. Polym. 2018, 28, 110–120. DOI: 10.1007/s10904-017-0730-6.
  • Zakharian, T. Y.; Seryshev, A.; Sitharaman, B.; Gilbert, B. E.; Knight, V.; Wilson, L. J. A Fullerene-Paclitaxel Chemotherapeutic: Synthesis, Characterization, and Study of Biological Activity in Tissue Culture. J. Am. Chem. Soc. 2005, 127, 12508–12509. DOI: 10.1021/ja0546525.
  • Bubenchikov, A. M.; Bubenchikov, M. A.; Mamontov, D.; V; Chelnokova, A. S.; Chumakova, S. P. Movement of Fullerenes and Their Dimers inside Carbon Nanotubes. Fuller. Nanotub. Carbon Nanostruct. 2021, 29, 803–809. DOI: 10.1080/1536383X.2021.1900122.
  • Collar, J. I.; Zioutas, K. Exotic Heavily Ionizing Particles Can Be Constrained by the Geological Abundance of Fullerenes. Phys. Rev. Lett. 1999, 83, 3097–3100. Oct DOI: 10.1103/PhysRevLett.83.3097.
  • Heath, J. R.; O’Brien, S.; C.; Zhang, Q.; Liu, Y.; Curl, R. F.; Kroto, H. W.; Tittel, F. K.; Smalley, R. E. Lanthanum Complexes of Spheroidal Carbon Shells. J. Am. Chem. Soc. 1985, 107, 7779–7780. DOI: 10.1021/ja00311a102.
  • Saunders, M.; Jiménez-Vázquez, H. A.; Cross, R. J.; Poreda, R. J. Stable Compounds of Helium and Neon: He@C60 and Ne@C60. Science 1993, 259, 1428–1430. DOI: 10.1126/science.259.5100.1428.
  • Saunders, M.; Jimenez-Vazquez, H. A.; Cross, R. J.; Mroczkowski, S.; Gross, M. L.; Giblin, D. E.; Poreda, R. J. Incorporation of Helium, Neon, Argon, Krypton, and Xenon into Fullerenes Using High Pressure. J. Am. Chem. Soc. 1994, 116, 2193–2194. DOI: 10.1021/ja00084a089.
  • Sure, R.; Tonner, R.; Schwerdtfeger, P. A Systematic Study of Rare Gas Atoms Encapsulated in Small Fullerenes Using Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2015, 36, 88–96. DOI: 10.1002/jcc.23787.
  • Ito, S.; Shimotani, H.; Takagi, H.; Dragoe, N. On the Synthesis Conditions of N and N2 Endohedral Fullerenes. Fullerene Nanotub. Carbon Nanostruct. 2008, 16, 206–213. DOI: 10.1080/15363830802064187.
  • Đerić, A. J.; Veljković, M. V.; Nešković, O. M.; Miletić, M. B.; Zmbov, K. F. Surface Ionization Mass Spectrometric Studies of the Li/C60 System. Fullerene Sci. Technol. 2000, 8, 461–473. DOI: 10.1080/10641220009351426.
  • Gadd, G. E.; Evans, P. J.; Kennedy, S.; James, M.; Elcombe, M.; Cassidy, D.; Moricca, S.; Holmes, J.; Webb, N.; Dixon, A.; Prasad, P. Gas Storage in Fullerenes. Fullerene Sci. Technol. 1999, 7, 1043–1143. DOI: 10.1080/10641229909350304.
  • Maruyama, S.; Yamaguchi, Y.; Kohno, M.; Yoshida, T. Formation Process of Empty and Metal-Containing Fullerenes—Molecular Dynamics and FT-ICR Studies. Fullerene Sci. Technol. 1999, 7, 621–636. DOI: 10.1080/10641229909351366.
  • Sabirov, D. S.; Terentyev, A. O.; Sokolov, V. I. Activation Energies and Information Entropies of Helium Penetration through Fullerene Walls. Insights into the Formation of Endofullerenes nX@C60/70 (n = 1 and 2) from the Information Entropy Approach. RSC Adv. 2016, 6, 72230–72237. DOI: 10.1039/C6RA12228K.
  • Morton, J. J.; L; Tyryshkin, A. M.; Ardavan, A.; Benjamin, S. C.; Porfyrakis, K.; Lyon, S. A.; Briggs, G. A. D. The N@C60 Nuclear Spin Qubit: Bang-Bang Decoupling and Ultrafast Phase Gates. Phys. stat. sol. (b) 2006, 243, 3028–3031. DOI: 10.1002/pssb.200669118.
  • Roch, N.; Vincent, R.; Elste, F.; Harneit, W.; Wernsdorfer, W.; Carsten, T.; Franck, B. Cotunneling through a Magnetic Single-Molecule Transistor Based on N@C60. Phys. Rev. B 2011, 83, 081407. DOI: 10.1103/PhysRevB.83.081407.
  • Kobayashi, S.-I.; Mori, S.; Iida, S.; Ando, H.; Takenobu, T.; Taguchi, Y.; Fujiwara, A.; Taninaka, A.; Shinohara, H.; Iwasa, Y. Conductivity and Field Effect Transistor of La2@C80 Metallofullerene. J. Am. Chem. Soc. 2003, 125, 8116–8117. DOI: 10.1021/ja034944a.
  • Perez-Jimenez, A. J. Molecular Electronics with Endohedral Metallofullerenes: The Test Case of La2@C80 Nanojunctions. J. Phys. Chem. C 2007, 111, 17640–17645. DOI: 10.1021/jp076143q.
  • Amusia, M. Y. Simple and Onion-Type Fullerenes Shells as Resonators and Amplifiers. Fuller. Nanotub. Carbon Nanostruct. 2010, 18, 353–368. DOI: 10.1080/1536383X.2010.487398.
  • Margadonna, S.; Prassides, K. Recent Advances in Fullerene Superconductivity. J. Solid State Chem. 2002, 168, 639–652. DOI: 10.1006/jssc.2002.9762.
  • Yakigaya, K.; Takeda, A.; Yokoyama, Y.; Ito, S.; Miyazaki, T.; Suetsuna, T.; Shimotani, H.; Kakiuchi, T.; Sawa, H.; Takagi, H.; et al. Superconductivity of Doped Ar@C60. New J. Chem. 2007, 31, 973–979. DOI: 10.1039/b700726d.
  • Mikawa, M.; Kato, H.; Okumura, M.; Narazaki, M.; Kanazawa, Y.; Miwa, N.; Shinohara, H. Paramagnetic Water-Soluble Metallofullerenes Having the Highest Relaxivity for MRI Contrast Agents. Bioconjugate Chem. 2001, 12, 510–514. DOI: 10.1021/bc000136m.
  • Yang, W. L.; Xu, Z. Y.; Wei, H.; Feng, M.; Suter, D. Quantum-Information-Processing Architecture with Endohedral Fullerenes in a Carbon Nanotube. Phys. Rev. A 2010, 81, 032303. DOI: 10.1103/physreva.81.032303.
  • Eckardt, M.; Wieczorek, R.; Harneit, W. Stability of C60 and N@C60 under Thermal and Optical Exposure. Carbon 2015, 95, 601–607. DOI: 10.1016/j.carbon.2015.08.073.
  • Ju, C.; Suter, D.; Du, J. An Endohedral Fullerene-Based Nuclear Spin Quantum Computer. Phys. Lett. A 2011, 375, 1441–1444. DOI: 10.1016/j.physleta.2011.02.031.
  • Meyer, C.; Harneit, W.; Naydenov, B.; Lips, K.; Weidinger, A. N@C60 and P@C60 as Quantum Bits. Appl. Magn. Reson. 2004, 27, 123–132. DOI: 10.1007/BF03166307.
  • Zhukov, S.; S; Balos, V.; Hoffman, G.; Alom, S.; Belyanchikov, M.; Nebioglu, M.; Roh, S.; Pronin, A.; Bacanu, G. R.; Abramov, P.; et al. Rotational Coherence of Encapsulated Ortho and Para Water in Fullerene-C60 Revealed by Time-Domain Terahertz Spectroscopy. Sci. Rep. 2020, 10, 18329. DOI: 10.1038/s41598-020-74972-3.
  • Yoshida, K.; Shibata, K.; Hirakawa, K. Terahertz Field Enhancement and Photon-Assisted Tunneling in Single-Molecule Transistors. Phys. Rev. Lett. 2015, 115, 138302. DOI: 10.1103/PhysRevLett.115.138302.
  • Slepchenkov, M. M.; Shunaev, V. V.; Glukhova, O. E. Response to External GHz and THz Radiation of K +@C60 Endohedral Complex in Cavity of Carbon Nanotube Containing Polymerized Fullerenes. J. Appl. Phys. 2019, 125, 244306. DOI: 10.1063/1.5083846.
  • Yaghobi, M.; Koohi, A. Nonlinear Optical and Structural Properties of M@C N Endohedrals (M = Li, Ca and Sc, N = 60 and 70). Mol. Phys. 2010, 108, 119–126. DOI: 10.1080/00268970903535475.
  • Madjet, M. E.-A.; Ali, E.; Carignano, M.; Vendrell, O.; Chakraborty, H. S. Ultrafast Transfer and Transient Entrapment of Photoexcited Mg Electron in Mg@C60. Phys. Rev. Lett. 2021, 126, 183002–183008. DOI: 10.1103/PhysRevLett.126.183002.
  • Cisneros-García, Z. N.; Hernández, D. A.; Tenorio, F. J.; Rodríguez-Zavala, J. G. Electronic Structure of Hydroxylated La@C82 Endohedral Metallofullerene: Implications on Photovoltaic Cells. Mol. Phys. 2020, 118, e1705411. DOI: 10.1080/00268976.2019.1705411.
  • Tukhbatullina, A. A.; Shepelevich, I. S.; Sabirov, D. S. Stability, and Polarizability of C20(CH2)n (n = 1–10), the Cyclopropane Adducts of the Smallest Fullerene: General Formula for Calculation of Mean Polarizability of Fullerene Derivatives C20XnYm and C60XnYm with Fixed (n + m) Number of Different Addends. Fullerene Nanotub. Carbon Nanostruct. 2017, 25, 71–78. DOI: 10.1080/1536383X.2016.1255203.
  • Bystrzejewski, M.; Huczko, A.; Lange, H.; Drabik, J.; Pawelec, E. Influence of C60 and Fullerene Soot on the Oxidation Resistance of Vegetable Oils. Fullerene Nanotub. Carbon Nanostruct. 2007, 15, 427–438. DOI: 10.1080/15363830701655820.
  • Dominguez-Gutierrez, F. J.; Krstic, P. S.; Irle, S.; Cabrera-Trujillo, R. Low-Energy Hydrogen Uptake by Small-Cage Cn and C n−1 B Fullerenes. Carbon 2018, 134, 189–198. DOI: 10.1016/j.carbon.2018.03.085.
  • Ren, Y. X.; Ng, T. Y.; Liew, K. M. State of Hydrogen Molecules Confined in C60 Fullerene and Carbon Nanocapsule Structures. Carbon 2006, 44, 397–406. DOI: 10.1016/j.carbon.2005.09.009.
  • Mahdy, A. M. E. DFT Study of Hydrogen Storage in Pd-Decorated C60 Fullerene. Mol. Phys. 2015, 113, 3531–3544. DOI: 10.1080/00268976.2015.1039090.
  • Shen, H. The Compressive Mechanical Properties of Cn (n = 20, 60, 80, 180) and Endohedral M@C60 (M = Na, Al, Fe) Fullerene Molecules. Mol. Phys. 2007, 105, 2405–2409. DOI: 10.1080/00268970701679467.
  • Wang, Z.; Su, K.; Fan, H.; Li, Y.; Wen, Z. Mechanical and Electronic Properties of Endofullerene Ne@C60 Studied via Structure Distortions. Mol. Phys. 2008, 106, 703–716. DOI: 10.1080/00268970801941791.
  • Koner, A.; Kumar, C.; Sathyamurthy, N. Heat Capacity of Endohedral Fullerenes Rg@C60 (Rg = He, Ne, Ar and Kr). Mol. Phys. 2018, 116, 2728–2735. DOI: 10.1080/00268976.2018.1463468.
  • Jalife, S.; Arcudia, J.; Pan, S.; Merino, G. Noble Gas Endohedral Fullerenes. Chem. Sci. 2020, 11, 6642–6652. DOI: 10.1039/D0SC02507K.
  • Cross, R. J.; Saunders, M.; Prinzbach, H. Putting Helium inside Dodecahedrane. Org. Lett. 1999, 1, 1479–1481. DOI: 10.1021/ol991037v.
  • Gebac, L.; C.; Bercu, M.; Filip, V. Molecular Dynamics of He Encapsulation in the C20H20 Cage at the Threshold Energy. Fullerenes, Nanotubes Carbon Nanostruct. 2023, 1–11. DOI: 10.1080/1536383X.2023.2179038.
  • Neyts, E.; Maeyens, A.; Pourtois, G.; Bogaerts, A. A Density-Functional Theory Simulation of the Formation of Ni-Doped Fullerenes by Ion Implantation. Carbon 2011, 49, 1013–1017. DOI: 10.1016/j.carbon.2010.11.009.
  • Neyts, E. C.; Bogaerts, A. Formation of Endohedral Ni@C60 and Exohedral Ni–C60 Metallofullerene Complexes by Simulated Ion Implantation. Carbon 2009, 47, 1028–1033. DOI: 10.1016/j.carbon.2008.12.023.
  • Schwerdtfeger, P.; Wirz, L. N.; Avery, J. The Topology of Fullerenes. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2015, 5, 96–145. DOI: 10.1002/wcms.1207.
  • Schmidt, M.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J.; H; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; et al. General Atomic and Molecular Electronic Structure System. J. Comput. Chem. 1993, 14, 1347–1363. DOI: 10.1002/jcc.540141112.
  • Pople, J. A.; Nesbet, R. K. Self-Consistent Orbitals for Radicals. J. Chem. Phys. 1954, 22, 571–572. DOI: 10.1063/1.1740120.
  • Chai, J.-D.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. DOI: 10.1039/B810189B.
  • Marx, D.; Hutter, J. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods; 1st ed.; Cambridge University Press: Cambridge, 2009; pp 24–27.
  • Bolton, K.; Hase, W. L.; Peslherbe, G. H. Direct Dynamics Simulations of Reactive Systems; World Scientific: Singapore, 1998; pp 143–189.
  • Loup, V. Computer” Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 1967, 159, 98–103. DOI: 10.1103/PhysRev.159.98.
  • Jiménez-Vázquez, H. A.; Tamariz, J.; Cross, R. J. Binding Energy in and Equilibrium Constant of Formation for the Dodecahedrane Compounds He@C20H20 and Ne@C20H20. J. Phys. Chem. A 2001, 105, 1315–1319. DOI: 10.1021/jp0027243.
  • Moran, D.; Stahl, F.; Jemmis, E. D.; Schaefer, H. F. I.; Schleyer, P. v R. Structures, Stabilities, and Ionization Potentials of Dodecahedrane Endohedral Complexes. J. Phys. Chem. A 2002, 106, 5144–5154. DOI: 10.1021/jp014471z.
  • Chen, Z.; Jiao, H.; Moran, D.; Hirsch, A.; Thiel, W.; Schleyer, P. v R. Structures and Stabilities of Endo- and Exohedral Dodecahedrane Complexes (X@C20H20 and XC20H20, X = H +, H, N, P, C −, Si −, O +, S +). J. Phys. Chem. A 2003, 107, 2075–2079. DOI: 10.1021/jp0273631.
  • Hait, D.; Rettig, A.; Head-Gordon, M. Well-Behaved versus Ill-Behaved Density Functionals for Single Bond Dissociation: Separating Success from Disaster Functional by Functional for Stretched H2. J. Chem. Phys. 2019, 150, 094115. DOI: 10.1063/1.5080122.
  • Hudson, B. S.; Allis, D. G.; Parker, S. F.; Ramirez-Cuesta, A. J.; Herman, H.; Prinzbach, H. Infrared, Raman, and Inelastic Neutron Scattering Spectra of Dodecahedrane: An Ih Molecule in Th Site Symmetry. J. Phys. Chem. A 2005, 109, 3418–3424. DOI: 10.1021/jp0503213.
  • Hudson, B. S.; Braden, D.; A.; Parker, S. F.; Prinzbach, H. The Vibrational Inelastic Neutron Scattering Spectrum of Dodecahedrane: Experiment and DFT Simulation. Angew. Chem. Int. Ed. 2000, 39, 514–516. DOI: 10.1002/(SICI)1521-3773(20000204)39:3¡514::AID-ANIE514¿3.0.CO;2-B.
  • Noether, E. Invariante Variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaften zu G¨ottingen, Mathematisch-Physikalische Klasse 1918, 1918, 235–257.
  • Sprang, H.; Mahlkow, A.; Campbell, E. E. B. Collisional Energy Dependence of He Capture by Internally Excited C60 Anions. Chem. Phys. Lett. 1994, 227, 91–97. DOI: 10.1016/0009-2614(94)00792-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.