149
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of hydrothermally derived boron and sulfur-incorporated reduced graphene oxide sheets for supercapacitor applications

, &
Pages 845-855 | Received 24 Jan 2023, Accepted 08 May 2023, Published online: 17 May 2023

References

  • Kumar, R.; Sahoo, S.; Tan, W.-K.; Kawamura, G.; Matsuda, A.; Kar, K.-K. Microwave-Assisted Thin Reduced Graphene Oxide-Cobalt Oxide Nanoparticles as Hybrids for Electrode Materials in Supercapacitor. J. Energy Storage 2021, 40, 102724. DOI: 10.1016/j.est.2021.102724.
  • Poonam Sharma, K.; Arora, A.; Tripathi; S. K.. Review of Supercapacitors: Materials and Devices. J. Energy Storage 2019, 21, 801–825. DOI: 10.1016/j.est.2019.01.010.
  • Arunachalam, S.; Kirubasankar, B.; Pan, D.; Liu, H.; Yan, C.; Guo, Z.; Angaiah, S. Research Progress in Rare Earths and Their Composites Based Electrode Materials for Supercapacitors. Green Energy Environ. 2020, 5, 259–273. DOI: 10.1016/j.gee.2020.07.021.
  • Mehta, S.; Jha, S.; Liang, H. Lignocellulose Materials for Supercapacitor and Battery Electrodes: A Review. Renew. Sustain. Energy Rev. 2020, 134, 110345. DOI: 10.1016/j.rser.2020.110345.
  • Saikia, B.-K.; Benoy, S.-M.; Bora, M.; Tamuly, J.; Pandey, M.; Bhattacharya, D. A Brief Review on Supercapacitor Energy Storage Devices and Utilization of Natural Carbon Resources as Their Electrode Materials. Fuel 2020, 282, 118796. DOI: 10.1016/j.fuel.2020.118796.
  • Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R.-K.; Maegawa, K.; Tan, W.-K.; Kawamura, G.; Kar, K.-K.; Matsuda, A. Heteroatom Doped Graphene Engineering for Energy Storage and Conversion. Mater. Today 2020, 39, 47–65. DOI: 10.1016/j.mattod.2020.04.010.
  • Koohi-Fayegh, S.; Rosen, M.-A. A Review of Energy Storage Types, Applications and Recent Developments. J. Energy Storage 2020, 27, 101047. DOI: 10.1016/j.est.2019.101047.
  • Huo, J.; Zheng, P.; Wang, X.; Guo, S. Three-Dimensional Sulphur/Nitrogen Co-Doped Reduced Graphene Oxide as High-Performance Supercapacitor Binder-Free Electrodes. Appl. Surf. Sci. 2018, 442, 575–580. DOI: 10.1016/j.apsusc.2018.01.221.
  • Hicham, M.; Fethi, A.; Ha, S.; Khaldoun, B. Antifouling Double Layers of Functionalized-Multi-Walled Carbon Nanotubes Coated ZnO for Sensitive and Selective Electrochemical Detection of Catechol. Fuller. Nanotub. Carbon Nanostruct. 2022, 30, 334–347. DOI: 10.1080/1536383X.2021.1940150.
  • Teng, S.; Shi, S.; Wang, G.; Xiang, Y.; Wan, G. Ozone-Activated CNTs to Induce Uniform Coating of MnO2 as High-Performance Supercapacitor Electrodes. Fuller. Nanotub. Carbon Nanostruct. 2022, 30, 1163–1169. DOI: 10.1080/1536383X.2022.2082414.
  • Meskher, H.; Achi, F.; Zouaoui, A.; Ha, S.; Peacock, M.; Belkhalfa, H. Simultaneous and Selective Electrochemical Determination of Catechol and Hydroquinone on a Nickel Oxide (NiO) Reduced Graphene Oxide (rGO) Doped Multiwalled Carbon Nanotube (fMWCNT) Modified Platinum Electrode. Anal. Lett 2022, 55, 1466–1481. DOI: 10.1080/00032719.2021.2008951.
  • Meskher, H.; Hussain, C.-M.; Thakur, A.; Sathyamurthy, R.; Lynch, I.; Singh, P.; Tan, K.-H.; Saidur, R. Recent Trends in Carbon Nanotube (CNT) Based Biosensors for Fast and Sensitive Detection of Human Viruses: A Critical Review. Nanoscale Adv. 2023, 5, 992–1010. DOI: 10.1039/D2NA00236A.
  • Yang, Z.; Yao, Z.; Li, G.; Fang, G.; Nie, H.; Liu, Z.; Zhou, X.; Chen, X.; Huang, S. Sulfur-Doped Graphene as an Efficient Metal-Free Cathode Catalyst for Oxygen Reduction. ACS Nano 2012, 6, 205–211. DOI: 10.1021/nn203393d.
  • Xu, C.; Xu, B.; Gu, Y.; Xiong, Z.; Sun, J.; Zhao, X.-S. Graphene-Based Electrodes for Electrochemical Energy Storage. Energy Environ. Sci 2013, 6, 1388–1414. DOI: 10.1039/c3ee23870a.
  • Sun, Y.; Wu, Q.; Shi, G. Graphene Based New Energy Materials. Energy Environ. Sci. 2011, 4, 1113–1132. DOI: 10.1039/c0ee00683a.
  • Staudenmaier, L. Process for the Preparation of Graphitic Acid. Ber. Dtsch. Chem. Ges 1898, 31, 1481–1487. DOI: 10.1002/cber.18980310237.
  • Hummers, Jr. W.-S.; Offeman, R.-E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339. DOI: 10.1021/ja01539a017.
  • Brodie, B.-C. X. On the Atomic Weight of Graphite. Philos. Trans. R. Soc 1859, 149, 249–259. DOI: 10.1098/rstl.1859.0013.
  • Rochman, R.-A.; Wahyuningsih, S.; Ramelan, A.-H.; Hanif, Q.-A. Preparation of Nitrogen and Sulphur Co-Doped Reduced Graphene Oxide (rGO-NS) Using N and S Heteroatom of Thiourea. IOP Conf. Ser.: Mater. Sci. Eng 2019, 509, 012119. DOI: 10.1088/1757-899X/509/1/012119.
  • Alam, S. N.; Sharma, N.; Kumar, L. Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (RGO). Graphene 2017, 6, 1–18. DOI: 10.4236/graphene.2017.61001.
  • Eluyemi, M.-S.; Eleruja, M.-A.; Adedeji, A.-V.; Olofinjana, B.; Fasakin, O.; Akinwunmi, O.-O.; Ilori, O.-O.; Famojuro, A.-T.; Ayinde, S.-A.; Ajayi, E.-O. Synthesis and Characterization of Graphene Oxide and Reduced Graphene Oxide Thin Films Deposited by Spray Pyrolysis Method. Graphene 2016, 05, 143–154. DOI: 10.4236/graphene.2016.53012.
  • Marcano, D.-C.; Kosynkin, D.-V.; Berlin, J.-M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.-B.; Lu, W.; Tour, J.-M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. DOI: 10.1021/nn1006368.
  • Wu, T.; Shen, H.; Sun, L.; Cheng, B.; Liu, B.; Shen, J. Nitrogen and Boron Doped Monolayer Graphene by Chemical Vapor Deposition Using Polystyrene, Urea and Boric Acid. New J. Chem. 2012, 36, 1385–1391. DOI: 10.1039/c2nj40068e.
  • Kim, S.; Choi, K.; Park, S. Solvothermal Reduction of Graphene Oxide in Dimethylformamide. Solid State Sci. 2016, 61, 40–43. DOI: 10.1016/j.solidstatesciences.2016.07.013.
  • Chen, Y.; Liu, Z.; Sun, L.; Lu, Z.; Zhuo, K. Nitrogen and Sulfur Co-Doped Porous Graphene Aerogel as an Efficient Electrode Material for High Performance Supercapacitor in Ionic Liquid Electrolyte. J. Power Source 2018, 390, 215–223. DOI: 10.1016/j.jpowsour.2018.04.057.
  • Shen, J.; Shi, M.; Ma, H.; Yan, B.; Li, N.; Ye, M. Hydrothermal Synthesis of Magnetic Reduced Graphene Oxide Sheets. Mater. Res. Bull 2011, 46, 2077–2083. DOI: 10.1016/j.materresbull.2011.06.042.
  • Ding, H.; Zhang, S.; Chen, J. T.; Hu, X. P.; Du, Z. F.; Qiu, Y. X.; Zhao, D. L. Reduction of Graphene Oxide at Room Temperature with Vitamin C for RGO–TiO2 Photoanodes in Dye-Sensitized Solar Cell. Thin Solid Films 2015, 584, 29–36. DOI: 10.1016/j.tsf.2015.02.038.
  • Emiru, T. F.; Ayele, D. W. Controlled Synthesis, Characterization and Reduction of Graphene Oxide: A Convenient Method for Large Scale Production. Egypt. J. Basic Appl. Sci 2017, 4, 74–79. DOI: 10.1016/j.ejbas.2016.11.002.
  • Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon 2007, 45, 1558–1565. DOI: 10.1016/j.carbon.2007.02.034.
  • Gopalsamy, K.; Balamurugan, J.; Thanh, T. D.; Kim, N. H.; Lee, J. H. Fabrication of Nitrogen and Sulfur Co-Doped Graphene Nanoribbons with Porous Architecture for High-Performance Supercapacitors. Chem. Eng. J 2017, 312, 180–190. DOI: 10.1016/j.cej.2016.11.130.
  • Kong, X.-K.; Chen, C. L.; Chen, Q.-W. Doped Graphene for Metal-Free Catalysis. Chem. Soc. Rev. 2014, 43, 2841–2857. DOI: 10.1039/C3CS60401B.
  • Ju, M.-J.; Kim, J.-C.; Choi, H.-J.; Choi, I.-T.; Kim, S.-G.; Lim, K.; Ko, J.; Lee, J.-J.; Jeon, I.-Y.; Baek, J.-B.; Kim, H.-K. N-Doped Graphene Nanoplatelets as Superior Metal-Free Counter Electrodes for Organic Dye-Sensitized Solar Cells. ACS Nano 2013, 7, 5243–5250. DOI: 10.1021/nn4009774.
  • Wang, T.; Wang, L.-X.; Wu, D.-L.; Xia, W.; Jia, D. Z. Interaction between Nitrogen and Sulfur in Co-Doped Graphene and Synergetic Effect in Supercapacitor. Sci Rep 2015, 5, 9. DOI: 10.1038/srep09591.
  • Ai, W.; Luo, Z.; Jiang, J.; Zhu, J.; Du, Z.; Fan, Z.; Xie, L.; Zhang, H.; Huang, W.; Yu, T. Nitrogen and Sulfur Codoped Graphene: Multifunctional Electrode Materials for High‐Performance Li‐Ion Batteries and Oxygen Reduction Reaction. Adv Mater 2014, 26, 6186–6192. DOI: 10.1002/adma.201401427.
  • Li, Y.; Wang, G.; Wei, T.; Fan, Z.; Yan, P. Nitrogen and Sulfur Co-Doped Porous Carbon Nanosheets Derived from Willow Catkin for Supercapacitors. Nano Energy. 2016, 19, 165–175. DOI: 10.1016/j.nanoen.2015.10.038.
  • Johnsirani, D.; Pandurangan, A. Chromium, Fluorine and Nitrogen Tri-Doped Graphene Sheets as an Active Electrode Material for Symmetric Supercapacitors. Diam. Relat. Mater 2020, 105, 107800. DOI: 10.1016/j.diamond.2020.107800.
  • Jo, J.; Lee, S.; Gim, J.; Song, J.; Kim, S.; Mathew, V.; Alfaruqi, M. H.; Kim, S.; Lim, J.; Kim, J. Facile Synthesis of Reduced Graphene Oxide by Modified Hummer’s Method as Anode Material for Li-, Na-and K-Ion Secondary Batteries. R. Soc. Open Sci. 2019, 6, 181978. DOI: 10.1098/rsos.181978.
  • Ghosh, T.-K.; Gope, S.; Rana, D.; Roy, I.; Sarkar, G.; Sadhukhan, S.; Bhattacharya, A.; Pramanik, K.; Chattopadhyay, S.; Chakraborty, M.; Chattopadhyay, D. Physical and Electrical Characterization of Reduced Graphene Oxide Synthesized Adopting Green Route. Bull Mater. Sci. 2016, 39, 543–550. DOI: 10.1007/s12034-016-1156-4.
  • Yasin, G.; Arif, M.; Shakeel, M.; Dun, Y.; Zuo, Y.; Khan, W.-Q.; Tang, Y.; Khan, A.; Nadeem, M. Exploring the Nickel–Graphene Nanocomposite Coatings for Superior Corrosion Resistance: Manipulating the Effect of Deposition Current Density on Its Morphology, Mechanical Properties, and Erosion‐Corrosion Performance. Adv. Eng. Mater 2018, 20, 1701166. DOI: 10.1002/adem.201701166.
  • Ma, J.; Guo, Q.; Gao, H.-L.; Qin, X. Synthesis of C60/Graphene Composite as Electrode in Supercapacitors. Fuller. Nanotub. Carbon Nanostructures 2015, 23, 477–482. DOI: 10.1080/1536383X.2013.865604.
  • Chen, Y.; Sun, L.; Liu, Z.; Jiang, Y.; Zhuo, K. Synthesis of Nitrogen/Sulfur Co-Doped Reduced Graphene Oxide Aerogels for High-Performance Supercapacitors with Ionic Liquid Electrolyte. Mater. Chem. Phys 2019, 238, 121932. DOI: 10.1016/j.matchemphys.2019.121932.
  • Yun, Y.-S.; Le, V.-D.; Kim, H.; Chang, S.-J.; Baek, S.-J.; Park, S.; Kim, B.-H.; Kim, Y.-H.; Kang, K.; Jin, H.-J. Effects of Sulfur Doping on Graphene-Based Nanosheets for Use as Anode Materials in Lithium-Ion Batteries. J. Power Sources 2014, 262, 79–85. DOI: 10.1016/j.jpowsour.2014.03.084.
  • Werheit, H.; Au, T.; Schmechel, R.; Shalamberidze, S.-O.; Kalandadze, G.-I.; Eristavi, A.-M. IR-Active Phonons and Structure Elements of Isotope-Enriched Boron Carbide. J. Solid State Chem. 2000, 154, 79–86. DOI: 10.1006/jssc.2000.8815.
  • Tian, Y.; Deng, C.; Sun, Z.; Zhao, Y.; Tan, T.; Yin, F.; Wang, X. Facile Hydrothermal Synthesis of Sulphur/Boron-Doped Reduced Graphene Oxide Composite Cathodes for High- Performance Li/S Batteries. Int. J. Electrochem. Sci. 2018, 13, 3441–3451. DOI: 10.20964/2018.04.37.
  • Yu, X.; Kang, Y.; Park, H.-S. Sulfur and Phosphorus Co-Doping of Hierarchically Porous Graphene Aerogels for Enhancing Supercapacitor Performance. Carbon 2016, 101, 49–56. DOI: 10.1016/j.carbon.2016.01.073.
  • Yu, X.; Park, H.-S. Sulfur-Incorporated, Porous Graphene Films for High Performance Flexible Electrochemical Capacitors. Carbon 2014, 77, 59–65. DOI: 10.1016/j.carbon.2014.05.002.
  • Luo, W.; Xue, H. The Synthesis and Electrochemical Performance of NiCo2O4 Embedded Carbon Nanofibers for High-Performance Supercapacitors. Fuller. Nanotub. Carbon Nanostruct. 2019, 27, 189–197. DOI: 10.1080/1536383X.2018.1538131.
  • Yang, Y.-J.; Li, W. One Step Synthesis of NiCo-LDH/CoNi2S4/rGO Composite on Ni Foam for Asymmetric Supercapacitor. Fuller. Nanotub. Carbon Nanostruct. 2023, 31, 327–335. DOI: 10.1080/1536383X.2022.2154756.
  • Devarajan, J.; Arumugam, P. Boron-Doped Activated Carbon from the Stems of Prosopis Juliflora as an Effective Electrode Material in Symmetric Supercapacitors. J Mater Sci: Mater Electron 2022, 33, 17469–17482. DOI: 10.1007/s10854-022-08595-x.
  • Meskher, H.; Achi, F.; Ha, S.; Berregui, B.; Babanini, F.; Belkhalfa, H. Sensitive rGO/MOF Based Electrochemical Sensor for Penta-Chlorophenol Detection: A Novel Artificial Neural Network (ANN) Application. Sens. Diagn 2022, 1, 1032–1043. DOI: 10.1039/D2SD00100D.
  • Xing, L.-B.; Hou, S.-F.; Zhang, J.-L.; Zhou, J.; Li, Z.; Si, W.; Zhuo, S. A Facile Preparation of Three Dimensional N, S Co-Doped Graphene Hydrogels with Thiocarbohydrazide for Electrode Materials in Supercapacitor. Mater. Lett 2015, 147, 97–100. DOI: 10.1016/j.matlet.2015.02.031.
  • Wang, Y.; Zhang, M.; Pan, D.; Li, Y.; Ma, T.; Xie, J. Nitrogen/Sulfur Co-Doped Graphene Networks Uniformly Coupled N-Fe2O3 Nanoparticles Achieving Enhanced Supercapacitor Performance. Electrochim. Acta 2018, 266, 242–253. DOI: 10.1016/j.electacta.2018.02.040.
  • Pandian, P.-M.; Pandurangan, A. Enhanced Electrostatic Potential with High Energy and Power Density of a Symmetric and Asymmetric Solid-State Supercapacitor of Boron and Nitrogen co-Doped Reduced Graphene Nanosheets for Energy Storage Devices. New J. Chem. 2021, 45, 12408–12425. DOI: 10.1039/D1NJ00486G.
  • Li, Z.; He, W.; Wang, X.; Wang, X.; Song, M.; Zhao, J. N/S Dual-Doped Graphene with High Defect Density for Enhanced Supercapacitor Properties. Int. J. Hydrog. Energy 2020, 45, 112–122. DOI: 10.1016/j.ijhydene.2019.10.196.
  • Kang, Y.; Wang, B.; Yan, Y.; Rana, H.-H.; Lee, J.-Y.; Kim, J.-H.; Park, H.-S. Three-Dimensionally Macroporous Nitrogen and Boron Co-Doped Graphene Aerogels Derived from Polyaspartamide for Supercapacitor Electrodes. Mater. Today Commun 2020, 25, 101495. DOI: 10.1016/j.mtcomm.2020.101495.
  • Mishra, R.-K.; Choi, G.-J.; Sohn, Y.; Lee, S.-H.; Gwag, J.-S. A Novel rGO/N-rGO Supercapacitor Architecture for a Wide Voltage Window, High Energy Density and Long-Life via Voltage Holding Tests. Chem. Commun. (Camb) 2020, 56, 2893–2896. DOI: 10.1039/D0CC00249F.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.