141
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of rGO nanoparticles on the structural, optical, and electrical properties of CaCO3 nanocomposite

&
Pages 921-930 | Received 11 May 2023, Accepted 04 Jun 2023, Published online: 29 Jun 2023

References

  • Avouris, P. Graphene: Electronic and Photonic Properties and Devices. Nano Lett. 2010, 10, 4285–4294. DOI: 10.1021/nl102824h.
  • Boles, M. A.; Ling, D.; Hyeon, T.; Talapin, D. V. The Surface Science of Nanocrystals. Nat. Mater. 2016, 15, 141–153. DOI: 10.1038/nmat4526.
  • He, X.; Deng, H.; Hwang, H. M. The Current Application of Nanotechnology in Food and Agriculture. J. Food Drug Anal. 2019, 27, 1–21. DOI: 10.1016/j.jfda.2018.12.002.
  • Ikram, M.; Haider, A.; Imran, M.; Haider, J.; Naz, S.; Ul-Hamid, A.; Shahzadi, A.; Ghazanfar, K.; Nabgan, W.; Moeen, S.; Ali, S. Assessment of Catalytic, Antimicrobial and Molecular Docking Analysis of Starch-Grafted Polyacrylic Acid Doped BaO Nanoparticles. Int. J. Biol. Macromol. 2023, 230, 123190. DOI: 10.1016/j.ijbiomac.2023.123190.
  • Wang, K.; Wang, Y. J.; Chen, G. G.; Luo, G. S.; Wang, J. D. Enhancement of Mixing and Mass Transfer Performance with a Microstructure Minireactor for Controllable Preparation of CaCO3 Nanoparticles. Ind. Eng. Chem. Res. 2007, 46, 6092–6098. DOI: 10.1021/ie061502+.
  • Tsierkezos, N. G.; Szroeder, P.; Ritter, U. Application of Films Consisting of Carbon Nanoparticles for Electrochemical Detection of Redox Systems in Organic Solvent Media. Fuller. Nanotub. Carbon Nanostruct. 2011, 19, 505–516. DOI: 10.1080/1536383X.2010.494782.
  • Ikram, M.; Hayat, S.; Imran, M.; Haider, A.; Naz, S.; Ul-Hamid, A.; Shahzadi, I.; Haider, J.; Shahzadi, A.; Nabgan, W.; Ali, S. Novel Ag/Cellulose-Doped CeO2 Quantum Dots for Efficient Dye Degradation and Bactericidal Activity with Molecular Docking Study. Carbohydr. Polym. 2021, 269, 118346. DOI: 10.1016/j.carbpol.2021.118346.
  • Imran, M., Haider, A., Shahzadi, I., Moeen, S., Ul-Hamid, A., Nabgan, W., Shahzadi, A., Alshahrani, T., Ikram, M., Ayesha; Polyvinylpyrrolidone and Chitosan-Coated Magnetite (Fe3O4) Nanoparticles for Catalytic and Antimicrobial Activity with Molecular Docking Analysis. J. Environ. Chem. Eng. 2023, 11, 110088. DOI: 10.1016/j.jece.2023.110088.
  • Fathinejad, H.; Souri, A. Study of Swelling Behavior of Hydrogel Nanocomposite Based on Polydopamine-Graphene Oxide–Polyacrylamide. Fuller. Nanotub. Carbon Nanostruct. 2022, 30, 503–507. DOI: 10.1080/1536383X.2021.1960828.
  • Qumar, U.; Hassan, J. Z.; Bhatti, R. A.; Raza, A.; Nazir, G.; Nabgan, W.; Ikram, M. Photocatalysis vs Adsorption by Metal Oxide Nanoparticles. J. Mater. Sci. 2022, 131, 122–166. DOI: 10.1016/j.jmst.2022.05.020.
  • Lin, Y.; Chan, C. M. Calcium Carbonate Nanocomposites. Adv. Polym. Technol. 2012, 55–90. DOI: 10.1533/9780857096241.1.55.
  • Munyemana, J. C.; He, H.; Fu, C.; Wei, W.; Tian, J.; Xiao, J. A Trypsin–Calcium Carbonate Hybrid Nanosphere Based Enzyme Reactor with Good Stability and Reusability. New J. Chem. 2018, 42, 18388–18394. DOI: 10.1039/C8NJ04282A.
  • Kiranda, H. K.; Mahmud, R.; Abubakar, D.; Zakaria, Z. A. Fabrication, Characterization and Cytotoxicity of Spherical-Shaped Conjugated Gold-Cockle Shell Derived Calcium Carbonate Nanoparticles for Biomedical Applications. Nanoscale Res. Lett. 2018, 13, 1–10. DOI: 10.1186/s11671-017-2411-3.
  • Zhao, Y.; Wu, Z.; Guo, S.; Zhou, Z.; Miao, Z.; Xie, S.; Huang, R.; Li, L. Hyperbranched Graphene Oxide Structure-Based Epoxy Nanocomposite with Simultaneous Enhanced Mechanical Properties, Thermal Conductivity, and Superior Electrical Insulation. Compos. Sci. Technol. 2022, 217, 109082. DOI: 10.1016/j.compscitech.2021.109082.
  • Cataldo, F.; Ursini, O.; Angelini, G. MWCNTs Elastomer Nanocomposite, Part 1: The Addition of MWCNTs to a Natural Rubber‐Based Carbon Black‐Filled Rubber Compound. Fuller. Nanotub. Carbon Nanostruct. 2009, 17, 38–54. DOI: 10.1080/15363830802515907.
  • Ma, C. G.; Mai, Y. L.; Rong, M. Z.; Ruan, W. H.; Zhang, M. Q. Phase Structure and Mechanical Properties of Ternary Polypropylene/Elastomer/Nano-CaCO3 Composites. Compos. Sci. Technol. 2007, 67, 2997–3005. DOI: 10.1016/j.compscitech.2007.05.022.
  • Ansari, S.; Rahima, C.; Muralidharan, M. N. Photomechanical Characteristics of Thermally Reduced Graphene Oxide–Polydimethylsiloxane Nanocomposites. Polym. Plast. Technol. Eng. 2013, 52, 1604–1610. DOI: 10.1080/03602559.2013.828232.
  • Shelke, N. T.; Karche, B. R. Ultraviolet Photosensor Based on Few Layered Reduced Graphene Oxide Nanosheets. Appl. Surf. Sci. 2017, 418, 374–379. DOI: 10.1016/j.apsusc.2016.12.150.
  • Soriano-Ortiz, J. A.; Rueda-Morales, G.; Martínez-Guitiérrez, H.; Rojas-Trigos, J. B.; Ortega-Cervantez, G.; Ortiz-López, J. Thermal and Electrical Properties Enhancement of a Nanocomposite of Industrial Silicone Rubber Filled with Reduced Graphene Oxide. Fuller. Nanotub. Carbon Nanostruct. 2022, 30, 221–231. DOI: 10.1080/1536383X.2021.1929189.
  • Kalat, M. N.; Razzaghi-Kashani, M. The Role of Reduced Graphene Oxide as a Secondary Filler in Improving the Performance of Silica-Filled Styrene-Butadiene Rubber Compounds. Polym. J. 2022, 54, 355–365. DOI: 10.1038/s41428-021-00570-3.
  • Mensah, B.; Konadu, D. S.; Agyei-Tuffour, B. Effects of Graphene Oxide and Reduced Graphene Oxide on the Mechanical and Dielectric Properties of Acrylonitrile-Butadiene Rubber and Ethylene-Propylene-Diene-Monomer Blend. Int. J. Polym. Sci. 2022, 2022, 1–17. DOI: 10.1155/2022/8038386.
  • Mandal, S. K.; Kumar, S.; Singh, P. K.; Mishra, S. K.; Singh, D. K. Performance Investigation of Nanocomposite Based Solar Water Heater. Energy 2020, 198, 117295. [22].,. DOI: 10.1016/j.energy.2020.117295.
  • Sehrawat, P., Islam, S. S., Mishra, Prabhash, Ahmad, Shahab, Abid,. Reduced Graphene Oxide (rGO) Based Wideband Optical Sensor and the Role of Temperature, Defect States and Quantum Efficiency.Sci Rep. 2018, 8(1), 1–13. DOI: 10.1038/s41598-018-21686-2.
  • Pathak, A. K.; Kumar, V.; Sharma, S.; Yokozeki, T.; Dhakate, S. R. Improved Thermomechanical and Electrical Properties of Reduced Graphene Oxide Reinforced Polyaniline–Dodecylbenzenesulfonic Acid/Divinylbenzene Nanocomposites. J. Colloid Interface Sci. 2019, 533, 548–560. DOI: 10.1016/j.jcis.2018.08.105.
  • Ahmadi, N.; Nemati, A.; Bagherzadeh, M. Synthesis and Properties of Ce-Doped TiO2-Reduced Graphene Oxide Nanocomposite. J. Alloys Compd. 2018, 742, 986–995. DOI: 10.1016/j.jallcom.2018.01.105.
  • Tan, L. L.; Ong, W. J.; Chai, S. P.; Mohamed, A. R. Reduced Graphene oxide-TiO2 Nanocomposite as a Promising Visible-Light-Active Photocatalyst for the Conversion of Carbon Dioxide. Nanoscale Res. Lett. 2013, 8, 1–9. [26]., (), pp. DOI: 10.1186/1556-276X-8-465.
  • Van Tuan, P.; Tuong, H. B.; Tan, V. T.; Thu, L. H.; Khoang, N. D.; Khiem, T. N. SnO2/Reduced Graphene Oxide Nanocomposites for Highly Efficient Photocatalytic Degradation of Methylene Blue. Opt. Mater. 2022, 123, 111916. DOI: 10.1016/j.optmat.2021.111916.
  • Azarang, M.; Shuhaimi, A.; Yousefi, R.; Sookhakian, M. Effects of Graphene Oxide Concentration on Optical Properties of ZnO/RGO Nanocomposites and Their Application to Photocurrent Generation. J. Appl. Phys. 2014, 116, 084307. DOI: 10.1063/1.4894141.
  • Luo, H.; Sui, Y.; Qi, J.; Meng, Q.; Wei, F.; He, Y. Copper Matrix Composites Enhanced by Silver/Reduced Graphene Oxide Hybrids. Mater. Lett. 2017, 196, 354–357. DOI: 10.1016/j.matlet.2017.03.084.
  • Yue, H.; Yao, L.; Gao, X.; Zhang, S.; Guo, E.; Zhang, H.; Lin, X.; Wang, B. Effect of Ball-Milling and Graphene Contents on the Mechanical Properties and Fracture Mechanisms of Graphene Nanosheets Reinforced Copper Matrix Composites. J. Alloys Compd. 2017, 691, 755–762. DOI: 10.1016/j.jallcom.2016.08.303.
  • Butler, M. F.; Frith, W. J.; Rawlins, C.; Weaver, A. C.; Heppenstall-Butler, M. Hollow Calcium Carbonate Microsphere Formation in the Presence of Biopolymers and Additives. Cryst. Growth 2009, Des. 9, 534–545. DOI: 10.1021/cg8008333.
  • Niu, Y. Q.; Liu, J. H.; Aymonier, C.; Fermani, S.; Kralj, D.; Falini, G.; Zhou, C. H. Calcium Carbonate: Controlled Synthesis, Surface Functionalization, and Nanostructured Materials. Chem. Soc. Rev. 2022, 51, 7883–7943. DOI: 10.1039/D1CS00519G.
  • Liu, X.; Wu, Y.; Zhao, X.; Wang, Z. Fabrication and Applications of Bioactive Chitosan-Based Organic-Inorganic Hybrid Materials: A Review. Carbohydr Polym. 2021, 267, 118179. DOI: 10.1016/j.carbpol.2021.118179.
  • Yaseen, S. A.; Yiseen, G. A.; Li, Z. Synthesis of Calcium Carbonate in Alkali Solution Based on Graphene Oxide and Reduced Graphene Oxide. J. Solid State Chem 2018, 262, 127–134. DOI: 10.1016/j.jssc.2018.03.005.
  • Wang, X.; Bai, H.; Jia, Y.; Zhi, L.; Qu, L.; Xu, Y.; Li, C.; Shi, G. Synthesis of CaCO3/Graphene Composite Crystals for Ultra-Strong Structural Materials. RSC Adv. 2012, 2, 2154–2160. DOI: 10.1039/c2ra00765g.
  • Tripathy, P.; Biswas, S. Mechanical and Thermal Properties of Basalt Fiber Reinforced Epoxy Composites Modified with CaCO3 Nanoparticles. Polym. Compos. 2022, 43, 7789–7803. DOI: 10.1002/pc.26883.
  • Avella, M.; Cosco, S.; Di Lorenzo, M. L.; Di Pace, E.; Errico, M. E. Influence of CaCO3 Nanoparticles Shape on Thermal and Crystallization Behavior of Isotactic Polypropylene Based Nanocomposites. J. Therm. Anal. Calorim. 2005, 80, 131–136. DOI: 10.1007/s10973-005-0624-7.
  • Bora, C.; Bharali, P.; Baglari, S.; Dolui, S. K.; Konwar, B. K. Strong and Conductive Reduced Graphene Oxide/Polyester Resin Composite Films with Improved Mechanical Strength, Thermal Stability and Its Antibacterial Activity. Compos. Sci. Technol. 2013, 87, 1–7. DOI: 10.1016/j.compscitech.2013.07.025.
  • Jiang, Z.; Yang, W.; He, F.; Xie, C.; Fan, J.; Wu, J.; Zhang, K. Modified Phase Change Microcapsules with Calcium Carbonate and Graphene Oxide Shells for Enhanced Energy Storage and Leakage Prevention. ACS Sustainable Chem. Eng. 2018, 6, 5182–5191. DOI: 10.1021/acssuschemeng.7b04834.
  • Rane, A. V.; Kanny, K.; Abitha, V. K.; Thomas, S. Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites. Synth. Inorganic Nanomater. 2018, 121–139. DOI: 10.1016/B978-0-08-101975-7.00005-1.
  • Pyun, J.; Matyjaszewski, K. Synthesis of Nanocomposite Organic/Inorganic Hybrid Materials Using Controlled/"Living" Radical Polymerization. Chem. Mater. 2001, 13, 3436–3448. DOI: 10.1021/cm011065j.
  • Barzegar-Bafrooei, H.; Ebadzadeh, T. (2011) Synthesis of Nanocomposite Powders of γ-Alumina-Carbon Nanotube by Sol–Gel Method. Adv. Powder. Technol. 2011, 22, 366–369. DOI: 10.1016/j.apt.2010.05.005.
  • Suryanarayana, C. (2011) Synthesis of Nanocomposites by Mechanical Alloying. J. Alloys Compd. 2011, 509, S229–S234. DOI: 10.1016/j.jallcom.2010.09.063.
  • Çiplak, Z.; Yildiz, N.; Çalimli, A. Investigation of Graphene/Ag Nanocomposites Synthesis Parameters for Two Different Synthesis Methods. Fuller. Nanotub. Carbon Nanostruct. 2015, 23, 361–370. DOI: 10.1080/1536383X.2014.894025.
  • Shahzadi, A.; Moeen, S.; Khan, A. D.; Haider, A.; Haider, J.; Ul-Hamid, A.; Nabgan, W.; Shahzadi, I.; Ikram, M.; Al-Shanini, A. La-Doped CeO2 Quantum Dots: Novel Dye Degrader, Antibacterial Activity, and in Silico Molecular Docking Analysis. ACS Omega. 2023, 8, 8605–8616. DOI: 10.1021/acsomega.2c07753.
  • Moeen, S.; Ikram, M.; Haider, A.; Haider, J.; Ul-Hamid, A.; Nabgan, W.; Shujah, T.; Naz, M.; Shahzadi, I. Comparative Study of Sonophotocatalytic, Photocatalytic, and Catalytic Activities of Magnesium and Chitosan-Doped Tin Oxide Quantum Dots. ACS Omega. 2022, 7, 46428–46439. DOI: 10.1021/acsomega.2c05133.
  • Bishwakarma, H.; Tyagi, R.; Kumar, N.; Das, A. K. Green Synthesis of Flower Shape ZnO-GO Nanocomposite through Optimized Discharge Parameter and Its Efficiency in Energy Storage Device. Environ. Res. 2023, 218, 115021. DOI: 10.1016/j.envres.2022.115021.
  • Kim, S. W.; Lee, S.; Saqib, A. N. S.; Lee, Y. H.; Jung, M. H. Ferromagnetism in Undoped ZnO Nanostructures Synthesized by Solution Plasma Process. Curr. Appl. Phys. 2017, 17, 181–185. DOI: 10.1016/j.cap.2016.11.016.
  • Chithira, P. R.; John, T. T. The Influence of Vacuum and Annealing on the Visible Luminescence in ZnO Nanoparticles. J. Lumin. 2017, 185, 212–218. DOI: 10.1016/j.jlumin.2017.01.022.
  • Greenberg, B. L.; Ganguly, S.; Held, J. T.; Kramer, N. J.; Mkhoyan, K. A.; Aydil, E. S.; Kortshagen, U. R. Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement. Nano Lett. 2015, 15, 8162–8169. DOI: 10.1021/acs.nanolett.5b03600.
  • https://nanoresearchlab.in/.
  • Vakili, M. H.; Ebadi-Dehaghani, H.; Haghshenas-Fard, M. Crystallization and Thermal Conductivity of CaCO3 Nanoparticle Filled Polypropylene. J. Macromol. Sci., Part B. 2011, 50, 1637–1645.
  • https://www.azonano.com/article.aspx?ArticleID=4041.
  • Fahmy Taha, M. H.; Ashraf, H.; Caesarendra, W. A Brief Description of Cyclic Voltammetry Transducer-Based Non-Enzymatic Glucose Biosensor Using Synthesized Graphene Electrodes. ASI 2020, 3, 32. [54]., (), p. DOI: 10.3390/asi3030032.
  • Stadler, A.; Schimper, H. J.; Brendel, U.; Topa, D.; Basch, A.; Dittrich, H. Analyzing UV/Vis/NIR Spectra with the Single-Layer Model—Sputtered SnS Thin Films I: Space–Time Dependencies. Thin Solid Films 2011, 519, 7951–7958. DOI: 10.1016/j.tsf.2011.04.234.
  • Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Stat. Sol. (b) 1966, 15, 627–637. DOI: 10.1002/pssb.19660150224.
  • Singh, P. K.; Das, A. K.; Hatui, G.; Nayak, G. C. Shape Controlled Green Synthesis of CuO Nanoparticles through Ultrasonic Assisted Electrochemical Discharge Process and Its Application for Supercapacitor. Mater. Chem. Phys. 2017, 198, 16–34. DOI: 10.1016/j.matchemphys.2017.04.070.
  • Naveen, A. N.; Selladurai, S. Novel Low Temperature Synthesis and Electrochemical Characterization of Mesoporous Nickel Cobaltite-Reduced Graphene Oxide (RGO) Composite for Supercapacitor Application. Electrochim. Acta 2015, 173, 290–301. DOI: 10.1016/j.electacta.2015.05.072.
  • Shen, Y.; Jing, T.; Ren, W.; Zhang, J.; Jiang, Z. G.; Yu, Z. Z.; Dasari, A. Chemical and Thermal Reduction of Graphene Oxide and Its Electrically Conductive Polylactic Acid Nanocomposites. Compos. Sci. Technol. 2012, 72, 1430–1435. DOI: 10.1016/j.compscitech.2012.05.018.
  • Thomsen, C.; Reich, S. Double Resonant Raman Scattering in Graphite. Phys. Rev. Lett. 2000, 85, 5214–5217. DOI: 10.1103/PhysRevLett.85.5214.
  • Gabrielli, C.; Jaouhari, R.; Joiret, S.; Maurin, G.; Rousseau, P. Study of the Electrochemical Deposition of CaCO3 by in Situ Raman Spectroscopy: I. Influence of the Substrate. J. Electrochem. Soc. 2003, 150, C478. DOI: 10.1149/1.1579482.
  • King, A. A.; Davies, B. R.; Noorbehesht, N.; Newman, P.; Church, T. L.; Harris, A. T.; Razal, J. M.; Minett, A. I. (2016) A New Raman Metric for the Characterisation of Graphene Oxide and Its Derivatives. Sci. Rep. 2016, 6, 19491. DOI: 10.1038/srep19491.
  • Son, Y. R.; Park, S. J. (2018) Green Preparation and Characterization of Graphene Oxide/Carbon Nanotubes-Loaded Carboxymethyl Cellulose Nanocomposites. Sci. Rep. 2018, 8, 1–10. DOI: 10.1038/s41598-018-35984-2.
  • Soliman, T. S.; Vshivkov, S. A. Effect of Fe Nanoparticles on the Structure and Optical Properties of Polyvinyl Alcohol Nanocomposite Films. J. Non-Cryst. Solids 2019, 519, 119452. DOI: 10.1016/j.jnoncrysol.2019.05.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.