634
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Characterization of carbon quantum dots obtained through citric acid pyrolysis

, , , , & ORCID Icon
Pages 931-939 | Received 29 Mar 2023, Accepted 08 Jun 2023, Published online: 21 Jun 2023

References

  • Hu, Q.; Gong, X.; Liu, L.; Choi, M. M. F. Characterization and Analytical Separation of Fluorescent Carbon Nanodots. J. Nanomater. 2017, 2017, 1–23. DOI: 10.1155/2017/1804178.
  • Das, R.; Bandyopadhyay, R.; Pramanik, P. Carbon Quantum Dots from Natural Resource: A Review. Mater. Today Chem. 2018, 8, 96–109. DOI: 10.1016/j.mtchem.2018.03.003.
  • Bressi, V.; Ferlazzo, A.; Iannazzo, D.; Espro, C. Graphene Quantum Dots by Eco-Friendly Green Synthesis for Electrochemical Sensing: Recent Advances and Future Perspectives. Nanomaterials 2021, 11, 1120. DOI: 10.3390/nano11051120.
  • Hebbar, A.; Selvaraj, R.; Vinayagam, R.; Varadavenkatesan, T.; Senthil Kumar, P.; Pham, A.-D.; Rangasamy, G. A Critical Review on the Environmental Applications of Carbon Dots. Chemosphere 2023, 313, 137308. DOI: 10.1016/j.chemosphere.2022.137308.
  • Tran, N.-A.; Hien, N. T.; Hoang, N. M.; Dang, H.-L. T.; Huy, D. Q.; Van Quy, T.; Hanh, N. T.; Vu, N. H.; Dao, V.-D. Carbon Dots in Environmental Treatment and Protection Applications. Desalination 2023, 548, 116285. DOI: 10.1016/j.desal.2022.116285.
  • Kateshiya, M. R.; Desai, M. L.; Malek, N. I.; Kailasa, S. K. Advances in Ultra‑Small Fluorescence Nanoprobes for Detection of Metal Ions, Drugs, Pesticides and Biomarkers. J. Fluoresc. 2023, 33, 775–798. DOI: 10.1007/s10895-022-03115-w.
  • Pinto, T.; da Silva; Paula, E. L. d.; Mesquita, J. P. d.; Pereira, F. V. Carbon Dots Prepared by Different Bottom-up Methods: A Study on Optical Properties and the Application as Nanoprobes for Metal Ions Detection. Fuller. Nanotub. Carb. Nanostruct. 2023, 1–11. DOI: 10.1080/1536383X.2023.2198227.
  • Umar, E.; Ikram, M.; Haider, J.; Nabgan, W.; Haider, A.; Imran, M.; Nazir, G. A State-of-the-Art Review on Carbon Quantum Dots: Prospective, Advances, Zebrafish Biocompatibility and Bioimaging in Vivo and Bibliometric Analysis. Sustain. Mater. Technol. 2023, 35, e00529. DOI: 10.1016/j.susmat.2022.e00529.
  • Feng, Z.; Adolfsson, K. H.; Xu, Y.; Fang, H.; Hakkarainen, M.; Wu, M. Carbon Dot/Polymer Nanocomposites: From Green Synthesis to Energy, Environmental and Biomedical Applications. Sustain. Mater. Technol. 2021, 29, e00304. DOI: 10.1016/j.susmat.2021.e00304.
  • Zulfajri, M.; Sudewi, S.; Ismulyati, S.; Rasool, A.; Adlim, M.; Huang, G. G. Carbon Dot/Polymer Composites with Various Precursors and Their Sensing Applications: A Review. Coatings 2021, 11, 1100. DOI: 10.3390/coatings11091100.
  • Liu, J.; Li, R.; Yang, B. Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS Cent. Sci. 2020, 6, 2179–−2195. DOI: 10.1021/acscentsci.0c01306.
  • Vallan, L.; Imahori, H. Citric Acid-Based Carbon Dots and Their Application in Energy Conversion. ACS Appl. Electron. Mater. 2022, 4, 4231–4257. DOI: 10.1021/acsaelm.2c01021.
  • Uran, S.; Alhani, A.; Silva, C. Study of Ultraviolet-Visible Light Absorbance of Exfoliated Graphite Forms. AIP Adv. 2017, 7, 035323. DOI: 10.1063/1.4979607.
  • Ren, J.; Malfatti, L.; Innocenzi, P. Citric Acid Derived Carbon Dots, the Challenge of Understanding the Synthesis-Structure Relationship. J. Carbon Res. 2020, 7, 2. DOI: 10.3390/c7010002.
  • Zhu, S.; Bai, X.; Wang, T.; Shi, Q.; Zhu, J.; Wang, B. One-Step Synthesis of Fluorescent Graphene Quantum Dots as an Effective Fluorescence Probe for Vanillin Detection. RSC Adv. 2021, 11, 9121–9129. DOI: 10.1039/d0ra10825a.
  • Bagheri, Z.; Ehtesabi, H.; Rahmandoust, M.; Ahadian, M. M.; Hallaji, Z.; Eskandari, F.; Jokar, E. New Insight into the Concept of Carbonization Degree in Synthesis of Carbon Dots to Achieve Facile Smartphone Based Sensing Platform General Revs. Sci. Rep. 2017, 7, 11013. DOI: 10.1038/s41598-017-11572-8.
  • Ludmerczki, R.; Mura, S.; Carbonaro, C. M.; Mandity, I. M.; Carraro, M.; Senes, N.; Garroni, S.; Granozzi, G.; Calvillo, L.; Marras, S.; et al. Carbon Dots from Citric Acid and Its Intermediates Formed by Thermal Decomposition. Chem. Eur. J. 2019, 25, 11963–11974. DOI: 10.1002/chem.201902497.
  • Otten, M.; Hildebrandt, M.; Kühnemuth, R.; Karg, M. Pyrolysis and Solvothermal Synthesis for Carbon Dots: Role of Purification and Molecular Fluorophores. Langmuir 2022, 38, 6148–6157. DOI: 10.1021/acs.langmuir.2c00508.
  • Martindale, B. C. M.; Hutton, G. A. M.; Caputo, C. A.; Reisner, E. Solar Hydrogen Production Using Carbon Quantum Dots and a Molecular Nickel Catalyst. J. Am. Chem. Soc. 2015, 137, 6018–6025. DOI: 10.1021/jacs.5b01650.
  • Wang, S.; Chen, Z.-G.; Cole, I.; Li, Q. Structural Evolution of Graphene Quantum Dots During Thermal Decomposition of Citric Acid and the Corresponding Photoluminescence. Carbon 2015, 82, 304–313. DOI: 10.1016/j.carbon.2014.10.075.
  • Dong, Y.; Shao, J.; Chen, C.; Li, H.; Wang, R.; Chi, Y.; Lin, X.; Che, G. Blue Luminescent Graphene Quantum Dots and Graphene Oxide Prepared by Tuning the Carbonization Degree of Citric Acid. Carbon 2012, 50, 4738–4743. DOI: 10.1016/j.carbon.2012.06.002.
  • Li, Z.; Wang, Y.; Ni, Y.; Kokot, S. A Rapid and Label-Free Dual Detection of Hg (II) and Cysteine with the Use of Fluorescence Switching of Graphene Quantum Dots. Sens. Actuators B 2015, 207, 490–497. DOI: 10.1016/j.snb.2014.10.071.
  • Huang, H.; Wang, B.; Chen, M.; Liu, M.; Leng, Y.; Liu, X.; Li, Y.; Liu, Z. Fluorescence Turn-on Sensing of Ascorbic Acid and Alkaline Phosphatase Activity Based on Graphene Quantum Dots. Sens. Actuators B 2016, 235, 356–361. DOI: 10.1016/j.snb.2016.05.080.
  • Wu, Z.; Li, W.; Chen, J.; Yu, C. A Graphene Quantum Dot-Based Method for the Highly Sensitive and Selective Fluorescence Turn on Detection of Biothiols. Talanta 2014, 119, 538–543. DOI: 10.1016/j.talanta.2013.11.065.
  • Song, Z.; Quan, F.; Xu, Y.; Liu, M.; Cui, L.; Liu, J. Multifunctional N, S Co-Doped Carbon Quantum Dots with pH- and Thermo-Dependent Switchable Fluorescent Properties and Highly Selective Detection of Glutathione. Carbon 2016, 104, 169–178. DOI: 10.1016/j.carbon.2016.04.003.
  • Ehrat, F.; Bhattacharyya, S.; Schneider, J.; Löf, A.; Wyrwich, R.; Rogach, A. L.; Stolarczyk, J. K.; Urban, A. S.; Feldmann, J. Tracking the Source of Carbon Dot Photoluminescence: Aromatic Domains versus Molecular Fluorophores. Nano Lett. 2017, 17, 7710–−7716. DOI: 10.1021/acs.nanolett.7b03863.
  • Chahal, S.; Yousefi, N.; Tufenkji, N. Green Synthesis of High Quantum Yield Carbon Dots from Phenylalanine and Citric Acid: Role of Stoichiometry and Nitrogen Doping. ACS Sustainable Chem. Eng. 2020, 8, 5566–−5575. DOI: 10.1021/acssuschemeng.9b07463.
  • Kumar, P.; Bhatt, G.; Kaur, R.; Dua, S.; Kapoor, A. Synthesis and Modulation of the Optical Properties of Carbon Quantum Dots Using Microwave Radiation. Fuller. Nanotub. Carb. Nanostruct. 2020, 28, 724–731. DOI: 10.1080/1536383X.2020.1752679.
  • Wu, P.; Li, W.; Wu, Q.; Liu, Y.; Liu, S. Hydrothermal Synthesis of Nitrogen-Doped Carbon Quantum Dots from Microcrystalline Cellulose for the Detection of Fe3+ Ions in an Acidic Environment. RSC Adv. 2017, 7, 44144–44153. DOI: 10.1039/C7RA08400E.
  • Schneider, J.; Reckmeier, C. J.; Xiong, Y.; Seckendorff, M. V.; Susha, A. S.; Kasák, P.; Rogach, A. L. Molecular Fluorescence in Citric Acid-Based Carbon Dots. J. Phys. Chem. C 2017, 121, 2014–2022. DOI: 10.1021/acs.jpcc.6b12519.
  • Kim, S.; Shin, D. H.; Kim, C. O.; Kang, S. S.; Joo, S. S.; Choi, S.-H.; Hwang, S. W.; Sone, C. Size-Dependence of Raman Scattering from Graphene Quantum Dots: Interplay Between Shape and Thickness. Appl. Phys. Lett. 2013, 102, 053108. DOI: 10.1063/1.4790641.
  • Matthews, M. J.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Endo, M. Origin of Dispersive Effects of the Raman D Band in Carbon Materials. Phys. Rev. B 1999, 59, R6585–R6588. DOI: 10.1103/PhysRevB.59.R6585.
  • Brown, S. D. M.; Jorio, A.; Corio, P.; Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Kneipp, K. Origin of the Breit-Wigner-Fano Lineshape of the Tangential G-Band Feature of Metallic Carbon Nanotubes. Phys. Rev. B 2001, 63, 155414. DOI: 10.1103/PhysRevB.63.155414.
  • Nsibande, S. A.; Forbes, P. B. C. Development of a Turn-on Graphene Quantum Dot-Based Fluorescent Probe for Sensing of Pyrene in Water. RSC Adv. 2020, 10, 12119–12128. DOI: 10.1039/C9RA10153E.
  • Da, X.; Han, Z.; Yang, Z.; Zhang, D.; Hong, R.; Tao, C.; Lin, H.; Huang, Y. Preparation of Multicolor Carbon Dots with High Fluorescence Quantum Yield and Application in White LED. Chem. Phys. Lett. 2022, 794, 139497. DOI: 10.1016/j.cplett.2022.139497.
  • Jovanović, S. P.; Syrgiannis, Z.; Budimir, M. D.; Milivojević, D. D.; Jovanović, D. J.; Pavlović, V. B.; Papan, J. M.; Bartenwerfer, M.; Mojsin, M. M.; Stevanović, M. J.; Todorović Marković, B. M. Graphene Quantum Dots as Singlet Oxygen Producer or Radical quencher - The Matter of Functionalization with Urea/Thiourea. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 109, 110539. DOI: 10.1016/j.msec.2019.110539.
  • Park, S. J.; Park, J. Y.; Chung, J. W.; Yang, H. K.; Moon, B. K.; Yi, S. S. Color Tunable Carbon Quantum Dots from Wasted Paper by Different Solvents for anti-Counterfeiting and Fluorescent Flexible Film. Chem. Eng. J. 2020, 383, 123200. DOI: 10.1016/j.cej.2019.123200.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.