136
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Dielectric relaxation and polaron hopping in biomass derived activated carbon

, , &
Pages 940-952 | Received 27 Feb 2023, Accepted 10 Jun 2023, Published online: 28 Jun 2023

References

  • Rao, Y.; Ogitani, S.; Kohl, P.; Wong, C. P. Novel Polymer–Ceramic Nanocomposite Based on High Dielectric Constant Epoxy Formula for Embedded Capacitor Application. J. Appl. Polym. Sci. 2002, 83, 1084–1090. DOI: 10.1002/app.10082.
  • Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Ballistic Carbon Nanotube Field-Effect Transistors. Nature 2003, 424, 654–657. DOI: 10.1038/nature01797.
  • Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, P. Single and Multi-Wall Carbon Nanotube Field-Effect Transistors. Appl. Phys. Lett. 1998, 73, 2447–2449. DOI: 10.1063/1.122477.
  • Zhang, Q. M.; Li, H.; Poh, M.; Xia, F.; Cheng, Z. Y.; Xu, H.; Huang, C. An All-Organic Composite Actuator Material with a High Dielectric Constant. Nature 2002, 419, 284–287. DOI: 10.1038/nature01021.
  • Baytar, O.; Şahin, Ö.; Saka, C. Sequential Application of Microwave and Conventional Heating Methods for Preparation of Activated Carbon from Biomass and Its Methylene Blue Adsorption. Appl. Therm. Eng. 2018, 138, 542–551. DOI: 10.1016/j.applthermaleng.2018.04.039.
  • Supee, A. H.; Ahmad Zaini, M. A. Coffee Residue Activated Carbons—A Commentary. Fullerenes Nanotubes Carbon Nanostruct. 2023, 31, 191–196. DOI: 10.1080/1536383X.2022.2137147.
  • Genel, Y.; Genel, İ.; Saka, C. Facile Synthesis of Mesoporous Activated Carbons Based on Ash Tree for Methylene Blue Adsorption: Mechanism, Kinetics, Isotherm, and Thermodynamic Studies. Fullerenes Nanotubes Carbon Nanostruct 2023, 31, 26–37. DOI: 10.1080/1536383X.2022.2102003.
  • Jiang, L.; Sheng, L.; Fan, Z. Biomass-Derived Carbon Materials with Structural Diversities and Their Applications in Energy Storage. Sci. China Mater. 2018, 61, 133–158. DOI: 10.1007/s40843-017-9169-4.
  • Kamran, U.; Heo, Y. J.; Lee, J. W.; Park, S. J. Functionalized Carbon Materials for Electronic Devices: A Review. Micromachines 2019, 10, 234. DOI: 10.3390/mi10040234.
  • Lam, E.; Luong, J. H. Carbon Materials as Catalyst Supports and Catalysts in the Transformation of Biomass to Fuels and Chemicals. ACS Catal. 2014, 4, 3393–3410. DOI: 10.1021/cs5008393.
  • Regi, M. Synthesis, Characterization, and Application of Carbon Nanotubes: The Case of Aerospace Engineering. Nanofibers Nanotechnol. Textiles 2007, 113–193. DOI: 10.1533/9781845693732.2.113.
  • Ahmad, H.; Markina, A. A.; Porotnikov, M. V.; Ahmad, F. A. Review of Carbon Fiber Materials in Automotive Industry. IOP Conf. Ser. Mater. Sci. Eng. 2020, 971, 032011. DOI: 10.1088/1757-899X/971/3/032011.
  • Thambiliyagodage, C.; Mirihana, S.; Gunathilaka, H. Porous Carbon Materials in Biomedical Applications. BJSTR 2019, 22, 16905–16907. DOI: 10.26717/BJSTR.2019.22.003798.
  • Wang, Y.; Ren, H.; Cheng, C.; Xu, C.; Fan, G.; Liu, Y. Tailorable Negative Permittivity of Carbon Materials Derived from Microcrystalline Cellulose at Different Carbonizing Temperature. ECS J. Solid State Sci. Technol. 2020, 9, 083001. DOI: 10.1149/2162-8777/abb4a3.
  • Bénard, P.; Chahine, R. Carbon Nanostructures for Hydrogen Storage. Solid State Hydrogen Storage 2008, 261–287. DOI: 10.1533/9781845694944.3.261.
  • Molaei, M. J. Principles, Mechanisms, and Application of Carbon Quantum Dots in Sensors: A Review. Anal. Methods 2020, 12, 1266–1287. DOI: 10.1039/C9AY02696G.
  • Luo, L.; Wu, X.; Li, Z.; Zhou, Y.; Chen, T.; Fan, M.; Zhao, W. Synthesis of Activated Carbon from Biowaste of Fir Bark for Methylene Blue Removal. R. Soc. Open Sci. 2019, 6, 190523. DOI: 10.1098/rsos.190523.
  • Malhotra, B. D.; Ali, M. A. Functionalized Carbon Nanomaterials for Biosensors. Nanomater. Biosensors 2018, 75–103. DOI: 10.1016/B978-0-323-44923-6.00002-9.
  • Menya, E.; Olupot, P. W.; Storz, H.; Lubwama, M.; Kiros, Y. Synthesis and Evaluation of Activated Carbon from Rice Husks for Removal of Humic Acid from Water. Biomass Conv. Bioref. 2022, 12, 3229–3248. DOI: 10.1007/s13399-020-01158-2.
  • Kaya, N. Removal of Congo Red and Rhodamine B Dyes from Aqueous Solution Using Unmodified and NH3/HCl-Modified Wood Charcoal: A Kinetic and Thermodynamic Study. Fullerenes Nanotubes Carbon Nanostruct. 2021, 29, 183–195. DOI: 10.1080/1536383X.2020.1825952.
  • Mishima, D.; Hamasuna, Y.; Kishita, T.; Tashima, D.; Otsubo, M.; Kumagai, S. 2011 Electrical Properties of Nanocarbon Produced from Organic Waste. 2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 113–116. DOI: 10.1109/CEIDP.2011.6232609.
  • Mishra, S. C.; Aireddy, H. Evaluation of Dielectric Behavior of Bio-Waste Reinforced Polymer Composite. J. Reinf. Plast. Compos. 2011, 30, 134–141. DOI: 10.1177/0731684410388442.
  • Kumar, S.; Ahlawat, N.; Ahlawat, N. Effect of Heating Rate on Microstructure and Electrical Properties of Microwave Sintered CaCu3Ti4O12 Ceramics. Adv. Mater. Lett. 2017, 8, 605–613. DOI: 10.5185/amlett.2017.6398.
  • Quan, B.; Liang, X.; Ji, G.; Cheng, Y.; Liu, W.; Ma, J.; Zhang, Y.; Li, D.; Xu, G. Dielectric Polarization in Electromagnetic Wave Absorption: Review and Perspective. J. Alloys Compd. 2017, 728, 1065–1075. DOI: 10.1016/j.jallcom.2017.09.082.
  • Rayssi, C.; Kossi, S. E.; Dhahri, J.; Khirouni, K. Frequency and Temperature-Dependence of Dielectric Permittivity and Electric Modulus Studies of the Solid Solution Ca0.85Er0.1Ti1− xCo4x/3O3 (0 ≤ x ≤ 0.1). RSC Adv. 2018, 8, 17139–17150. DOI: 10.1039/C8RA00794B.
  • Parvez Ahmad, M. D.; Venkateswara Rao, A.; Suresh Babu, K.; Narsinga Rao, G. Effect of Carbon-Doping on Structural and Dielectric Properties of Zinc Oxide. J. Adv. Dielect. 2020, 10, 2050017. DOI: 10.1142/S2010135X20500174.
  • Badr, A. M.; Elshaikh, H. A.; Ashraf, I. M. Impacts of Temperature and Frequency on the Dielectric Properties for Insight into the Nature of the Charge Transports in the Tl2S Layered Single Crystals. JMP 2011, 02, 12–25. DOI: 10.4236/jmp.2011.21004.
  • Jin, C.; Li, J.; Han, S.; Wang, J.; Sun, Q. A Durable, Superhydrophobic, Superoleophobic and Corrosion-Resistant Coating with Rose-like ZnO Nanoflowers on a Bamboo Surface. Appl. Surf. Sci. 2014, 320, 322–327. DOI: 10.1016/j.apsusc.2014.09.065.
  • Díez, N.; Śliwak, A.; Gryglewicz, S.; Grzyb, B.; Gryglewicz, G. Enhanced Reduction of Graphene Oxide by High-Pressure Hydrothermal Treatment. RSC Adv. 2015, 5, 81831–81837. DOI: 10.1039/C5RA14461B.
  • Jiao, X.; Qiu, Y.; Zhang, L.; Zhang, X. Comparison of the Characteristic Properties of Reduced Graphene Oxides Synthesized from Natural Graphites with Different Graphitization Degrees. RSC Adv. 2017, 7, 52337–52344. DOI: 10.1039/C7RA10809E.
  • Zhang, Z.; Wang, Q. The New Method of XRD Measurement of the Degree of Disorder for Anode Coke Material. Crystals 2017, 7, 5. DOI: 10.3390/cryst7010005.
  • Jurkiewicz, K.; Pawlyta, M.; Burian, A. Structure of Carbon Materials Explored by Local Transmission Electron Microscopy and Global Powder Diffraction Probes. C J. Carbon Res. 2018, 4, 68. DOI: 10.3390/c4040068.
  • Radoń, A.; Łukowiec, D. Structure of Nanographite Synthesized by Electrochemical Oxidation and Exfoliation of Polycrystalline Graphite. Micro Nano Lett. 2017, 12, 955–959. DOI: 10.1049/mnl.2017.0339.
  • Xie, M.; Yang, J.; Liang, J.; Guo, X.; Ding, W. In Situ Hydrothermal Deposition as an Efficient Catalyst Supporting Method Towards Low-Temperature Graphitization of Amorphous Carbon. Carbon 2014, 77, 215–225. DOI: 10.1016/j.carbon.2014.05.024.
  • Han, M.; Yin, X.; Ren, S.; Duan, W.; Zhang, L.; Cheng, L. Core/Shell Structured C/ZnO Nanoparticles Composites for Effective Electromagnetic Wave Absorption. RSC Adv. 2016, 6, 6467–6474. DOI: 10.1039/C5RA25295D.
  • Katta, V. K. M.; Dubey, R. S.; Joshi, G. M. Experimental Investigation of Activated Carbon Nanoflakes Produced by Thermal and Chemical Activation Processes. Fullerenes Nanotubes Carbon Nanostruct. 2023, 31, 10–17. DOI: 10.1080/1536383X.2022.2090542.
  • Baytar, O.; Şahin, Ö.; Saka, C.; Ağrak, S. Characterization of Microwave and Conventional Heating on the Pyrolysis of Pistachio Shells for the Adsorption of Methylene Blue and Iodine. Anal. Lett. 2018, 51, 2205–2220. DOI: 10.1080/00032719.2017.1415920.
  • Janu, R.; Mrlik, V.; Ribitsch, D.; Hofman, J.; Sedláček, P.; Bielská, L.; Soja, G. Biochar Surface Functional Groups as Affected by Biomass Feedstock, Biochar Composition and Pyrolysis Temperature. Carbon Resour. Convers. 2021, 4, 36–46. DOI: 10.1016/j.crcon.2021.01.003.
  • Zhang, J.; Gao, J.; Chen, Y.; Hao, X.; Jin, X. Characterization, Preparation, and Reaction Mechanism of Hemp Stem-Based Activated Carbon. Results Phys. 2017, 7, 1628–1633. DOI: 10.1016/j.rinp.2017.04.028.
  • Md Salim, R.; Asik, J.; Sarjadi; M. S. Chemical Functional Groups of Extractives, Cellulose, and Lignin Extracted from Native Leucaena Leucocephala Bark. Wood Sci. Technol. 2021, 55, 295–313. DOI: 10.1007/s00226-020-01258-2.
  • Hina, K.; Bishop, P.; Arbestain, M. C.; Calvelo-Pereira, R.; Maciá-Agulló, J. A.; Hindmarsh, J.; Hanly, J. A.; Macìas, F.; Hedley, M. J. Producing Biochars with Enhanced Surface Activity through Alkaline Pretreatment of Feedstocks. Soil Res. 2010, 48, 606–617. DOI: 10.1071/SR10015.
  • Francis, A. O.; Kevin, O. S.; Ahmad Zaini, M. A. Vitex Doniana Seed Activated Carbon for Methylene Blue Adsorption: Equilibrium and Kinetics. Int. J. Phytorem. 2023, 1–11. DOI: 10.1080/15226514.2023.2179013.
  • Kahvecioğlu, K.; Teğin, İ.; Yavuz, Ö.; Saka, C. Phosphorus, and Oxygen Co-Doped Carbon Particles Based on Almond Shells with Hydrothermal and Microwave Irradiation Process for Adsorption of Lead (II) and Cadmium (II). Environ. Sci. Pollut. Res. Int. 2023, 30, 37946–37960. DOI: 10.1007/s11356-022-24968-5.
  • Wang, K.; Zhao, N.; Lei, S.; Yan, R.; Tian, X.; Wang, J.; Song, Y.; Xu, D.; Guo, Q.; Liu, L. Promising Biomass-Based Activated Carbons Derived from Willow Catkins for High Performance Supercapacitors. Electrochim. Acta 2015, 166, 1–11. DOI: 10.1016/j.electacta.2015.03.048.
  • Ramirez, N.; Sardella, F.; Deiana, C.; Schlosser, A.; Müller, D.; Kißling, P. A.; Klepzig, L. F.; Bigall, N. C. Capacitive Behavior of Activated Carbons Obtained from Coffee Husk. RSC Adv. 2020, 10, 38097–38106. DOI: 10.1039/D0RA06206E.
  • Cheng, C.; Yan, K.; Fan, R.; Qian, L.; Zhang, Z.; Sun, K.; Chen, M. Negative Permittivity Behavior in the Carbon/Silicon Nitride Composites Prepared by Impregnation-Carbonization Approach. Carbon 2016, 96, 678–684. DOI: 10.1016/j.carbon.2015.10.003.
  • Phan, D. T.; Chung, G. S. Effects of Oxygen-Functional Groups on Humidity Sensor-Based Graphene Oxide Thin Films. Sensors 2012, 1–4. DOI: 10.1109/ICSENS.2012.6411130.
  • Matsumura, T.; Kinumoto, T.; Matsuoka, M.; Tsumura, T.; Toyoda, M. Preparation of Carbonaceous Fiber Sheets Derived from Bamboo and Application to Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells. ECS Trans. 2015, 64, 19–27. DOI: 10.1149/MA2014-02/49/2208.
  • Wei, Z.; Pan, R.; Hou, Y.; Yang, Y.; Liu, Y. Graphene-Supported Pd Catalyst for Highly Selective Hydrogenation of Resorcinol to 1,3-Cyclohexanedione through Giant π-Conjugate Interactions. Sci. Rep. 2015, 5, 9. DOI: 10.1038/srep15664.
  • Wu, J.; Tao, K.; Kang, L.; Jiang, H.; Zhang, D.; Xu, S.; Wang, B. Preparation of Sponge-Like Activated Carbon via Carbonization of Super Absorbent Polymer (SAP) as Electrode Materials for Supercapacitors. Fullerenes Nanotubes Carbon Nanostruct. 2016, 24, 635–640. DOI: 10.1080/1536383X.2016.1219850.
  • Alam, R. B.; Ahmad, M. H.; Islam, M. R. Effect of MWCNT Nanofiller on the Dielectric Performance of Bio-Inspired Gelatin-Based Nanocomposites. RSC Adv. 2022, 12, 14686–14697. DOI: 10.1039/D2RA01508K.
  • Sharmila, B.; George, N.; Sasi, S.; V Antony, J.; Chandra, J.; Raman, V.; Nambath Purushothaman, D. A Comprehensive Investigation of Dielectric Properties of Epoxy Composites Containing Conducting Fillers: Fluffy Carbon Black and Various Types of Reduced Graphene Oxide. Polymers Adv. Techs 2022, 33, 3151–3162. DOI: 10.1002/pat.5767.
  • Naceur, H.; Megriche, A.; el Maaoui, M. Frequency-Dependent Dielectric Characteristics and Conductivity Behavior of Sr1−x(Na0. 5Bi0. 5)xBi2Nb2O9 (x = 0.0, 0.2, 0.5, 0.8 and 1.0) Ceramics. Orientjchem 2013, 29, 937–944. DOI: 10.13005/ojc/290311.
  • Chu, C. W.; Chen, F.; Shulman, J.; Tsui, S.; Xue, Y. Y.; Wen, W.; Sheng, P. A. 2005 Negative Dielectric Constant in Nano-Particle Materials under an Electric Field at Very Low Frequencies. Strongly Correlated Electron Materials: Physics and Nanoengineering (SPIE), 5932, 139–148. DOI: 10.1117/12.626267.
  • Yardim, Y.; Saka, C. Oxygen and Nitrogen-Doped Carbon Particles Derived from Pyrolysis of Chlorella Vulgaris and Spirulina Platensis Microalgae as an Efficient Electrode Material for Supercapacitor Application. Fullerenes Nanotubes Carbon Nanostruct 2023, 1–11. DOI: 10.1080/1536383X.2023.2201496.
  • Cheng, C.; Fan, R.; Wang, Z.; Shao, Q.; Guo, X.; Xie, P.; Yin, Y.; Zhang, Y.; An, L.; Lei, Y.; et al. Tunable and Weakly Negative Permittivity in Carbon/Silicon Nitride Composites with Different Carbonizing Temperatures. Carbon 2017, 125, 103–112. DOI: 10.1016/j.carbon.2017.09.037.
  • Chang, J.; Liang, G.; Gu, A.; Cai, S.; Yuan, L. The Production of Carbon Nanotube/Epoxy Composites with a Very High Dielectric Constant and Low Dielectric Loss by Microwave Curing. Carbon 2012, 50, 689–698. DOI: 10.1016/j.carbon.2011.09.029.
  • Liu, X.; Wang, L. S.; Ma, Y.; Zheng, H.; Lin, L.; Zhang, Q.; Chen, Y.; Qiu, Y.; Peng, D. L. Enhanced Microwave Absorption Properties by Tuning Cation Deficiency of Perovskite Oxides of Two-Dimensional LaFeO3/C Composite in X-Band. ACS Appl. Mater. Interfaces 2017, 9, 7601–7610. DOI: 10.1021/acsami.6b15379.
  • Khopkar, V.; Sahoo, B. Low-Temperature Dielectric Properties and NTCR Behavior of the BaFe0.5Nb0.5O3 Double Perovskite Ceramic. Phys. Chem. Chem. Phys. 2020, 22, 2986–2998. DOI: 10.1039/C9CP05707B.
  • Chihaoui, N.; Dhahri, R.; Bejar, M.; Dharhi, E.; Costa, L. C.; Graça, M. P. F. Electrical and Dielectric Properties of the Ca2MnO4−δ System. Solid State Commun. 2011, 151, 1331–1335. DOI: 10.1016/j.ssc.2011.06.023.
  • Kavinkumar, T.; Manivannan, S. Thermal and Dielectric Properties of Multi-Walled Carbon Nanotube–Graphene Oxide Composite. J. Mater. Sci. Mater. Electron. 2017, 28, 344–353. DOI: 10.1007/s10854-016-5529-7.
  • Jiang, X.; Zhao, X.; Peng, G.; Liu, W.; Liu, K.; Zhan, Z. Investigation on Crystalline Structure and Dielectric Relaxation Behaviors of Hot-Pressed Poly (Vinylidene Fluoride) Film. Curr. Appl. Phys. 2017, 17, 15–23. DOI: 10.1016/j.cap.2016.10.011.
  • Ranjan, R.; Kumar, R.; Kumar, N.; Behera, B.; Choudhary, R. N. P. Impedance and Electric Modulus Analysis of Sm-Modified Pb (Zr0.55Ti0.45)1−x/4O3 Ceramics. J. Alloys Compd. 2011, 509, 6388–6394. DOI: 10.1016/j.jallcom.2011.03.003.
  • Chakraborty, G.; Gupta, K.; Rana, D.; Meikap, A. K. Dielectric Relaxation in Polyvinyl Alcohol–Polypyrrole–Multiwall Carbon Nanotube Composites below Room Temperature. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013, 4, 025005. DOI: 10.1088/2043-6262/4/2/025005.
  • Achour, M. E.; Mdarhri, A.; Carmona, F.; Lahjomri, F.; Oueriagli, A. Dielectric Properties of Carbon Black–Epoxy Resin Composites Studied with Impedance Spectroscopy. Spectrosc. Lett. 2008, 41, 81–86. DOI: 10.1080/00387010801943848.
  • Wei, Y. Z.; Sridhar, S. A New Graphical Representation for Dielectric Data. J. Chem. Phys. 1993, 99, 3119–3124. DOI: 10.1063/1.465165.
  • Puzenko, A.; Ishai, P. B.; Feldman, Y. Cole–Cole Broadening in Dielectric Relaxation and Strange Kinetics. Phys. Rev. Lett. 2010, 105, 037601. DOI: 10.1103/PhysRevLett.105.037601.
  • Javed, M.; Khan, A. A.; Kazmi, J.; Mohamed, M. A.; Khan, M. N.; Hussain, M.; Bilkees, R. Dielectric Relaxation and Small Polaron Hopping Transport in Sol-Gel-Derived NiCr2O4 Spinel Chromite. Mater. Res. Bull. 2021, 138, 111242. DOI: 10.1016/j.materresbull.2021.111242.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.