49
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The effect of structure on the conductivity of disordered carbon (the case of graphene-containing shungite)

, &
Pages 961-970 | Received 14 Apr 2023, Accepted 12 Jun 2023, Published online: 10 Jul 2023

References

  • Beguin, F.; Frakowiak, E. Carbons for Electrochemical Energy Storage and Conversional Systems; CRS Press, 2010.
  • Pandolfo, A. G.; Hollenkamp, A. F. Carbon Properties and Their Role in Supercapacitors. J. Pow. Sources 2006, 157, 11–27. DOI: 10.1016/j.jpowsour.2006.02.065.
  • Frackowiak, E.; Béguin, F. Carbon Materials for the Electrochemical Storage of Energy in Capacitors. Carbon 2001, 39, 937–950. DOI: 10.1016/S0008-6223(00)00183-4.
  • Zhang, Y.; Feng, H.; Wu, X.; Wang, L.; Zhang, A.; Xia, T.; Dong, H.; Li, X.; Zhang, L. Progress of Electrochemical Capacitor Electrode Materials: A Review. Hydrogen Energy 2009, 34, 4889–4899. DOI: 10.1016/j.ijhydene.2009.04.005.
  • Kazantseva, N. E.; Ryvkina, N. G.; Chmutin, I. A. Promising Materials for Microwave Absorbers. J. Commun. Technol. Electron. 2003, 48, 173–184.
  • Chung, D. D. L. Electromagnetic Interference Shielding Effectiveness of Carbon Materials. Carbon 2001, 39, 279–285. DOI: 10.1016/S0008-6223(00)00184-6.
  • Chung, D. D. L. Carbon Materials for Structural Self-Sensing, Electromagnetic Shielding and Thermal Interfacing. Carbon 2012, 50, 3342–3353. DOI: 10.1016/j.carbon.2012.01.031.
  • Liang, J.; Wang, Y.; Huang, Y.; Ma, Y.; Liu, Z.; Cai, J.; Zhang, C.; Gao, H.; Chen, Y. Electromagnetic Interference Shielding of Graphene/Epoxy Composites. Carbon 2009, 47, 922–925. DOI: 10.1016/j.carbon.2008.12.038.
  • Wang, Y.; Jiang, T.; Shi, S.; Xiang, L.; Tang, B.; Qi, Z.; Gui, X.; Cao, S.; Xu, K.; Li, W.; et al. Lightweight Chopped Carbon Fiber/Carbon Composites with Low Thermal Conductivity Fabricated by Vacuum Filtration Method. Fuller. Nanotub. Carbon Nanostruct. 2023, 31, 605–612. DOI: 10.1080/1536383X.2023.2194638.
  • Moshnikov, I. A.; Kovalevski, V. V.; Markovskii, Y. A. Electrical Conductivity of Carbon Films Obtained by Thermal Sputtering of Type I Shungite Rocks of Various Deposits. Proceedings of 15th International Conference “Advanced Carbon Nanostructures” (ACNS'2021), 2022; Vol. 30, pp 1–4. DOI: 10.1080/1536383X.2021.1998004.
  • Kotsyubynsky, V.; Rachiy, B.; Boychuk, V.; Budzulyak, I.; Turovska, L.; Hodlevska, M. Correlation between Structural Properties and Electrical Conductivity of Porous Carbon Derived from Hemp Bast Fiber. Fuller. Nanotub. Carbon Nanostruct. 2022, 30, 873–882. DOI: 10.1080/1536383X.2022.2033729.
  • Kumar, P. G.; Kumaresan, V.; Velraj, R. Stability, Viscosity, Thermal Conductivity, and Electrical Conductivity Enhancement of Multi-Walled Carbon Nanotube Nanofluid Using Gum Arabic. Fuller. Nanotub. Carbon Nanostruct. 2017, 25, 230–240. DOI: 10.1080/1536383X.2017.1283615.
  • Bembenek, M.; Kotsyubynsky, V.; Boychuk, V.; Rachiy, B.; Budzulyak, I.; Kowalski, Ł.; Ropyak, L. Effect of Synthesis Conditions on Capacitive Properties of Porous Carbon Derived from Hemp Bast Fiber. Energies 2022, 15, 8761. DOI: 10.3390/en15228761.
  • Berezkin, V. I.; Kholodkevich, S. V.; Konstantinov, P. P. Hall Eff Ect in the Natural Glassy Carbon of Shungites. Phys. Solid State 1997, 39, 1590–1593. DOI: 10.1134/1.1129903.
  • Kovalevski, V. V.; Prikhodko, A. V.; Buseck, P. R. Diamagnetism of Natural Fullerene-like Carbon. Carbon 2005, 43, 401–405. DOI: 10.1016/j.carbon.2004.09.030.
  • Melezhik, V. A.; Filippov, M. M.; Romashkin, A. E. A Giant Paleoproterozoic Deposit of Shungite in NW Russia. Ore Geol. Rev. 2004, 24, 135–154. DOI: 10.1016/j.oregeorev.2003.08.003.
  • Buseck, P. R.; Galdobina, L. P.; Kovalevski, V. V.; Rozhkova, N. N.; Valley, J. W.; Zaidenberg, A. Z. Shungites: The C-Rich Rocks of Karelia, Russia. Can. Miner. 1997, 35, 1363–1378.
  • Kovalevski, V. V.; Buseck, P. R.; Cowley, J. M. Comparison of Carbon in Shungite Rocks to Other Natural Carbons: An X-Ray and TEM Study. Carbon 2001, 39, 243–256. DOI: 10.1016/S0008-6223(00)00120-2.
  • Golubev, Y. A.; Rozhkova, N. N.; Kabachkov, E. N.; Shul’ga, Y. M.; Natkaniec-Hołderna, K.; Natkaniec, I.; Antonets, I. V.; Makeev, B. A.; Popova, N. A.; Popova, V. A.; Sheka, E. F. sp2 Amorphous Carbons in View of Multianalytical Consideration: Normal, Expeсted and New. J. Non-Crystal. Solids 2019, 524, 119608. DOI: 10.1016/j.jnoncrysol.2019.119608.
  • Lyn’kov, L. M.; Borbot’ko, T. V.; Krishtopova, E. A. Radio-Absorbing Properties of Nickel-Containing Shungite Powder. Tech. Phys. Lett. 2009, 35, 410–411. DOI: 10.1134/S1063785009050071.
  • Antonets, I. V.; Golubev, E. A.; Shavrov, V. G.; Shcheglov, V. I. Dynamic Microwave Conductivity of Graphene-Based Shungite. Tech. Phys. Lett. 2018, 44, 371–373. DOI: 10.1134/S1063785018050036.
  • Golubev, Y. A.; Antonets, I. V.; Shcheglov, V. I. Static and Dynamic Conductivity of Nanostructured Carbonaceous Shungite Geomaterials. Mater. Chem. Phys. 2019, 226, 195–203. DOI: 10.1016/j.matchemphys.2019.01.033.
  • Sheka, E. F.; Rozhkova, N. N. Shungite as Loosely Packed Fractal Nets of Grapheme Based Quantum Dots. Int. J. Smart Nano Mater. 2014, 5, 1–16. DOI: 10.1080/19475411.2014.885913.
  • Sheka, E. F.; Golubev, E. A. Technical Graphene (Reduced Graphene Oxide) and Its Natural Analog (Shungite). Tech. Phys. 2016, 61, 1032–1038. DOI: 10.1134/S1063784216070239.
  • Antonets, I. V.; Golubev, E. A.; Kotov, L. N.; Kalinin, Y. E.; Sitnikov, A. V. Nanostructure and Electrical Conductivity of Amorphous Granulated (Co45Fe45Zr10)x(Al2O3)1–x Composite Films. Tech. Phys. 2016, 61, 416–423. DOI: 10.1134/S1063784216030038.
  • Antonets, I. V.; Kotov, L. N.; Kirpicheva, O. A.; Golubev, E. A.; Kalinin, Y. E.; Sitnikov, A. V.; Shavrov, V. G.; Shcheglov, V. I. Static and Dynamic Conduction of Amorphous Nanogranulated Metal–Dielectric Composites. J. Commun. Technol. Electron. 2015, 60, 904–914. DOI: 10.7868/S0033849415070013.
  • Antonets, I. V.; Golubev, E. A.; Shavrov, V. G.; Shcheglov, V. I. Representation of the Specific Conductivity of Graphene-Containing Shungite Based on the Current Tube Model. J. Radio Electron. 2020, 2020, 1–39. DOI: 10.30898/1684-1719.2020.3.7.
  • Antonets, I. V.; Golubev, Y. A.; Shcheglov, V. I. Influence of Graphene Stacks on the Structure and Conductivity of Shungite Carbon. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1047, 012162. DOI: 10.1088/1757-899X/1047/1/012162.
  • Morozov, S. V.; Novoselov, K. S.; Geim, A. K. Electronic Transport in Grapheme. Phys.-Usp. 2008, 51, 744–748. DOI: 10.1070/PU2008v051n07ABEH006575.
  • Hill, E. W.; Geim, A. K.; Novoselov, K.; Schedin, F.; Blake, P. Graphene Spin Valve Devices. IEEE Trans. Magn. 2006, 42, 2694–2696. DOI: 10.1109/TMAG.2006.878852.
  • Golubev, E. A. Electrophysical Properties and Structural Features of Shungite (Natural Nanostructured Carbon). Phys. Solid State 2013, 55, 1078–1086. DOI: 10.1134/S1063783413050107.
  • Shavrov, V. G.; Shcheglov, V. I. Ferromagnetic Resonance under Conditions of Orientational Transition; Fizmatlit: Moscow, 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.