191
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Nanostructure modeling for thermal properties of zigzag carbon nanotubes

, &
Pages 971-982 | Received 27 Feb 2023, Accepted 14 Jun 2023, Published online: 28 Jun 2023

References

  • Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes. Nature 1996, 381, 678–680. DOI: 10.1038/381678a0.
  • Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. Carbon Nanotubes: Synthesis. Structure, Properties, and Applications. Topics Appl. Phys. 2001, 80, 1–9.
  • Yu, M.-F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S. Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes under Tensile Load. Science 2000, 287, 637–640. DOI: 10.1126/science.287.5453.637.
  • Kolahchi, R.; Farzad, K. A Numerical Method for Magneto-Hygro-Thermal Dynamic Stability Analysis of Defective Quadrilateral Graphene Sheets Using Higher Order Nonlocal Strain Gradient Theory with Different Movable Boundary Conditions. Appl. Math. Modell. 2021, 91, 458–475. DOI: 10.1016/j.apm.2020.09.060.
  • Chitriv, S. P.; Chaudhary, A. K.; Yellumahanti, S. R.; Vijayakumar, R. P. Functionalization of Unzipped Multi-Walled Carbon Nanotube Oxides with l-Tyrosine for the Adsorption of Methylene Blue. Fullerenes, Nanotubes and Carbon Nanostruct. 2022, 30, 1199–1206. DOI: 10.1080/1536383X.2022.2084080.
  • Zhu, R.; Pan, E.; Roy, A. K. Molecular Dynamics Study of the Stress-Strain Behavior of Carbon-Nanotube Reinforced Epon 862 Composites. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process 2007, 447, 51–57. DOI: 10.1016/j.msea.2006.10.054.
  • Pan, J.; Bian, L. C. A Physics Investigation for Influence of Carbon Nanotube Agglomeration on Thermal Properties of Composites. Mater. Chem. Phys. 2019, 236, 121777. DOI: 10.1016/j.matchemphys.2019.121777.
  • Eringen, A. C.; Wegner, J. Nonlocal Continuum Field Theories. Appl. Mech. Rev. 2003, 56, B20–B22. DOI: 10.1115/1.1553434.
  • Eringen, A. C.; Edelen, D. On Nonlocal Elasticity. Int. J. Eng. Sci. 1972, 10, 233–248. DOI: 10.1016/0020-7225(72)90039-0.
  • Lobiak, E. V.; Kuznetsova, V. R.; Flahaut, E.; Okotrub, A. V.; Bulusheva, L. G. Effect of Co-Mo Catalyst Preparation and CH4/H(2) Flow on Carbon Nanotube Synthesis. Fullerenes, Nanotubes and Carbon Nanostruct. 2020, 28, 707–715. DOI: 10.1080/1536383X.2020.1749051.
  • Bian, L. C.; Li, H.; Cheng, Y. Temperature and Size-Dependent Modelling for Predicting Mechanical Properties of Carbon Nanotubes. Appl. Math. Modell. 2021, 98, 518–536. DOI: 10.1016/j.apm.2021.05.022.
  • Doğan, M.; Turan, M.; Beyli, P. T.; Bicil, Z.; Kızılduman, B. K. Thermal and Kinetic Properties of Poly(Vinylacetate)/Modified MWCNT Nanocomposites. Fullerenes, Nanotubes and Carbon Nanostruct. 2021, 29, 475–485. DOI: 10.1080/1536383X.2020.1860945.
  • Jonuarti, R.; Suprijadi, B. Interactions of Noxious Molecules on a Single Gold Atom Decorated an Ultra-Small Carbon Nanotube: A Density Functional Theory Study. Sensors and Actuators A: Phys., 2021, 331, 113024. DOI: 10.1016/j.sna.2021.113024.
  • Kundalwal, S. I.; Meguid, S. A. Multiscale Modeling of Regularly Staggered Carbon Fibers Embedded in Nano-Reinforced Composites. Eur. J. Mech. A-Solids 2017, 64, 69–84. DOI: 10.1016/j.euromechsol.2017.01.014.
  • Bian, L. C.; Chen, L.; Gao, M. Stress Distribution Analysis and Interface Influence on Fiber Reinforced Composites. Mech. Mater. 2020, 146, 103400. DOI: 10.1016/j.mechmat.2020.103400.
  • Zhang, Y. Q.; Liu, G. R.; Wang, J. S. Small-Scale Effects on Buckling of Multiwalled Carbon Nanotubes under Axial Compression. Phys. Rev. B 2004, 70, 6. DOI: 10.1103/PhysRevB.70.205430.
  • Heireche, H.; Tounsi, A.; Benzair, A.; Maachou, M.; Bedia, E. A. Sound Wave Propagation in Single-Walled Carbon Nanotubes Using Nonlocal Elasticity. Physica E 2008, 40, 2791–2799. DOI: 10.1016/j.physe.2007.12.021.
  • Chang, T.; Li, G.; Guo, X. Elastic Axial Buckling of Carbon Nanotubes via a Molecular Mechanics Model. Carbon 2005, 43, 287–294. DOI: 10.1016/j.carbon.2004.09.012.
  • Zhang, Y.; Liu, G.; Qiang, H.; Li, G. Investigation of Buckling of Double-Walled Carbon Nanotubes Embedded in an Elastic Medium Using the Energy Method. Int. J. Mech. Sci. 2006, 48, 53–61. DOI: 10.1016/j.ijmecsci.2005.09.010.
  • Ranjbartoreh, A.; Wang, G.; Arani, A. G.; Loghman, A. Comparative Consideration of Axial Stability of Single-and Double-Walled Carbon Nanotube and Its Inner and Outer Tubes. Physica E 2008, 41, 202–208. DOI: 10.1016/j.physe.2008.06.026.
  • Raravikar, N. R.; Keblinski, P.; Rao, A. M.; Dresselhaus, M. S.; Schadler, L. S.; Ajayan, P. M. Temperature Dependence of Radial Breathing Mode Raman Frequency of Single-Walled Carbon Nanotubes. Phys. Rev. B 2002, 66, 235424. DOI: 10.1103/PhysRevB.66.235424.
  • Xiaohu, Y.; Qiang, H. Investigation of Axially Compressed Buckling of a Multi-Walled Carbon Nanotube under Temperature Field. Compos. Sci. Technol. 2007, 67, 125–134. DOI: 10.1016/j.compscitech.2006.03.021.
  • Yao, X.; Han, Q. The Thermal Effect on Axially Compressed Buckling of a Double-Walled Carbon Nanotube. Eur. J. Mech.-A/Solids 2007, 26, 298–312. DOI: 10.1016/j.euromechsol.2006.05.009.
  • Hao, M.; Guo, X.; Wang, Q. Small-Scale Effect on Torsional Buckling of Multi-Walled Carbon Nanotubes. Eur. J. Mech.-A/Solids 2010, 29, 49–55. DOI: 10.1016/j.euromechsol.2009.05.008.
  • Zhang, Y.; Liu, G.; Xie, X. Free Transverse Vibrations of Double-Walled Carbon Nanotubes Using a Theory of Nonlocal Elasticity. Phys. Rev. B 2005, 71, 195404. DOI: 10.1103/PhysRevB.71.195404.
  • Liew, K. M.; Hu, Y.; He, X. Flexural Wave Propagation in Single-Walled Carbon Nanotubes. Jnl of Comp & Theo Nano 2008, 5, 581–586. DOI: 10.1166/jctn.2008.019.
  • Dresselhaus, M.; Dresselhaus, G.; Saito, R. Physics of Carbon Nanotubes. Carbon 1995, 33, 883–891. DOI: 10.1016/0008-6223(95)00017-8.
  • Badger, R. M. A Relation between Internuclear Distances and Bond Force Constants. J. Chem. Phys. 1934, 2, 128–131. DOI: 10.1063/1.1749433.
  • Salvetat, J.-P.; Bonard, J.-M.; Bacsa, R.; Stöckli, T.; Forró, L. Physical Properties of Carbon Nanotubes. In AIP Conference Proceedings. American Institute of Physics: Melville, NY, 1998.
  • Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197. DOI: 10.1021/ja00124a002.
  • Bian, L. C.; Zhao, H. C. Elastic Properties of a Single-Walled Carbon Nanotube under a Thermal Environment. Compos. Struct. 2015, 121, 337–343. DOI: 10.1016/j.compstruct.2014.11.032.
  • Shokrieh, M. M.; Rafiee, R. Prediction of Young’s Modulus of Graphene Sheets and Carbon Nanotubes Using Nanoscale Continuum Mechanics Approach. Mater. Des 2010, 31, 790–795. DOI: 10.1016/j.matdes.2009.07.058.
  • Eberhardt, O.; Wallmersperger, T. Energy Consistent Modified Molecular Structural Mechanics Model for the Determination of the Elastic Properties of Single Wall Carbon Nanotubes. Carbon 2015, 95, 166–180. DOI: 10.1016/j.carbon.2015.07.092.
  • Lei, X.; Natsuki, T.; Shi, J.; Ni, Q.-Q. Analysis of Carbon Nanotubes on the Mechanical Properties at Atomic Scale. J. Nanomater. 2011, 2011, 1–10. DOI: 10.1155/2011/805313.
  • Natsuki, T.; Tantrakarn, K.; Endo, M. Effects of Carbon Nanotube Structures on Mechanical Properties. Appl. Phys. A 2004, 79, 117–124. DOI: 10.1007/s00339-003-2492-y.
  • Zhu, S. Q.; Wang, X. Effect of Environmental Temperatures on Elastic Properties of Single-Walled Carbon Nanotube. J. Therm. Stresses 2007, 30, 1195–1210. DOI: 10.1080/01495730701519565.
  • Tu, Z-c.; Ou-Yang, Z-c Single-Walled and Multiwalled Carbon Nanotubes Viewed as Elastic Tubes with the Effective Young’s Moduli Dependent on Layer Number. Phys. Rev. B 2002, 65, 233407. DOI: 10.1103/PhysRevB.65.233407.
  • Eringen, A. C. Nonlocal Polar Elastic Continua. Int. J. Eng. Sci. 1972, 10, 1–16. DOI: 10.1016/0020-7225(72)90070-5.
  • Eringen, A. C. On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves. J. Appl. Phys. 1983, 54, 4703–4710. DOI: 10.1063/1.332803.
  • Ru, C. Axially Compressed Buckling of a Doublewalled Carbon Nanotube Embedded in an Elastic Medium. J. Mech. Phys. Solids 2001, 49, 1265–1279. DOI: 10.1016/S0022-5096(00)00079-X.
  • Ranjbartoreh, A. R.; Ghorbanpour, A.; Soltani, B. Double-Walled Carbon Nanotube with Surrounding Elastic Medium under Axial Pressure. Physica E 2007, 39, 230–239. DOI: 10.1016/j.physe.2007.04.010.
  • Reulet, B.; Kasumov, A. Y.; Kociak, M.; Deblock, R.; Khodos, I.; Gorbatov, Y. B.; Volkov, V.; Journet, C.; Bouchiat, H. Acoustoelectric Effects in Carbon Nanotubes. Phys. Rev. Lett. 2000, 85, 2829–2832. DOI: 10.1103/PhysRevLett.85.2829.
  • Girifalco, L.; Lad, R. Energy of Cohesion, Compressibility, and the Potential Energy Functions of the Graphite System. J. Chem. Phys. 1956, 25, 693–697. DOI: 10.1063/1.1743030.
  • Girifalco, L. Interaction Potential for Carbon (C60) Molecules. J. Phys. Chem. 1991, 95, 5370–5371. DOI: 10.1021/j100167a002.
  • Sudak, L. Column Buckling of Multiwalled Carbon Nanotubes Using Nonlocal Continuum Mechanics. J. Appl. Phys. 2003, 94, 7281–7287. DOI: 10.1063/1.1625437.
  • Wang, C.; Ru, C.; Mioduchowski, A. Axially Compressed Buckling of Pressured Multiwall Carbon Nanotubes. Int. J. Solids Struct 2003, 40, 3893–3911. DOI: 10.1016/S0020-7683(03)00213-0.
  • Batra, R. C.; Sears, A. Continuum Models of Multi-Walled Carbon Nanotubes. Int. J. Solids Struct 2007, 44, 7577–7596. DOI: 10.1016/j.ijsolstr.2007.04.029.
  • Sears, A.; Batra, R. C. Buckling of Multiwalled Carbon Nanotubes under Axial Compression. Phys. Rev. B 2006, 73, 11. DOI: 10.1103/PhysRevB.73.085410.
  • Heireche, H.; Tounsi, A.; Benzair, A.; Mechab, I. Sound Wave Propagation in Single-Walled Carbon Nanotubes with Initial Axial Stress. J. Appl. Phys. 2008, 104, 014301. DOI: 10.1063/1.2949274.
  • Wang, Q.; Wang, C. M. The Constitutive Relation and Small Scale Parameter of Nonlocal Continuum Mechanics for Modelling Carbon Nanotubes. Nanotechnology 2007, 18, 075702. DOI: 10.1088/0957-4484/18/7/075702.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.