110
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, characterization, thermophysical properties and shape stability of paraffin/CNTs nanocomposite phase change materials

, &
Pages 999-1005 | Received 08 Feb 2023, Accepted 21 Jun 2023, Published online: 14 Jul 2023

References

  • Muruganantham, K. Application of Phase Change Material in Buildings: Field Data vs. EnergyPlus Simulation; Arizona State University: Arizona, USA, 2010.
  • Fan, L.; Khodadadi, J. M. Thermal Conductivity Enhancement of Phase Change Materials for Thermal Energy Storage: A Review. Renew. Sust. Energy. Rev. 2011, 15, 24–46. DOI: 10.1016/j.rser.2010.08.007.
  • Tariq, S. L.; Ali, H. M.; Akram, M. A. Thermal Applications of Hybrid Phase Change Materials: A Critical Review. Therm. Sci. 2020, 24, 2151–2169. DOI: 10.2298/TSCI190302112T.
  • Baetens, R.; Jelle, B. P.; Gustavsen, A. Phase Change Materials for Building Applications: A State-of-the-Art Review. Energy Build. 2010, 42, 1361–1368. DOI: 10.1016/j.enbuild.2010.03.026.
  • Li, M.; Guo, Q.; Nutt, S. Carbon Nanotube/Paraffin/Montmorillonite Composite Phase Change Material for Thermal Energy Storage. Sol. Energy 2017, 146, 1–7. DOI: 10.1016/j.solener.2017.02.003.
  • Sharma, A.; Tyagi, V. V.; Chen, C. R.; Buddhi, D. Review on Thermal Energy Storage with Phase Change Materials and Applications. Renew. Sust. Energ. Rev. 2009, 13, 318–345. DOI: 10.1016/j.rser.2007.10.005.
  • Liu, L.; Zheng, K.; Yan, Y.; Cai, Z.; Lin, S.; Hu, X. Graphene Aerogels Enhanced Phase Change Materials Prepared by One-Pot Method with High Thermal Conductivity and Large Latent Energy Storage. Sol. Energy Mater Sol. Cells 2018, 185, 487–493. DOI: 10.1016/j.solmat.2018.06.005.
  • Podara, C. V.; Kartsonakis, I. A.; Charitidis, C. A. Towards Phase Change Materials for Thermal Energy Storage: Classification, Improvements and Applications in the Building Sector. Appl. Sci. 2021, 11, 1490. DOI: 10.3390/app11041490.
  • Dorigato, A.; Canclini, P.; Unterberger, S. H.; Pegoretti, A. Phase Changing Nanocomposites for Low Temperature Thermal Enegy Storage and Release. Express Polym. Lett. 2017, 11, 738–752. DOI: 10.3144/expresspolymlett.2017.71.
  • Karaipekli, A.; Biçer, A.; Sarı, A.; Tyagi, V. V. Thermal Characteristics of Expanded Perlite/Paraffin Composite Phase Change Material with Enhanced Thermal Conductivity Using Carbon Nanotubes. Energy Convers. Manag. 2017, 134, 373–381. DOI: 10.1016/j.enconman.2016.12.053.
  • Xu, B.; Li, Z. Paraffin/Diatomite/Multi-Wall Carbon Nanotubes Composite Phase Change Material Tailor-Made for Thermal Energy Storage Cement-Based Composites. Energy. 2014, 72, 371–380. DOI: 10.1016/j.energy.2014.05.049.
  • Kuziel, A. W.; Dzido, G.; Turczyn, R.; Jędrysiak, R. G.; Kolanowska, A.; Tracz, A.; Zięba, W.; Cyganiuk, A.; Terzyk, A. P.; Boncel, S. Ultra-Long Carbon Nanotube-Paraffin Composites of Record Thermal Conductivity and High Phase Change Enthalpy among Paraffin-Based Heat Storage Materials. J. Energy Storage. 2021, 36, 102396. DOI: 10.1016/j.est.2021.102396.
  • Sarı, A. Form-Stable Paraffin/High Density Polyethylene Composites as Solid–Liquid Phase Change Material for Thermal Energy Storage: Preparation and Thermal Properties. Energy Convers. Manag. 2004, 45, 2033–2042. DOI: 10.1016/j.enconman.2003.10.022.
  • Shi, T.; Zhang, X.; Qiao, J.; Wu, X.; Chen, G.; Leng, G.; Lin, F.; Min, X.; Huang, Z. Preparation and Characterization of Composite Phase Change Materials Based on Paraffin and Carbon Foams Derived from Starch. Polymer. 2021, 212, 123143. DOI: 10.1016/j.polymer.2020,123143.
  • Wang, J.; Xie, H.; Xin, Z. Thermal Properties of Paraffin Based Composites Containing Multi-Walled Carbon Nanotubes. Thermochim. Acta. 2009, 488, 39–42. DOI: 10.1016/j.tca.2009.01.022.
  • Li, T.; Lee, J. H.; Wang, R.; Kang, Y. T. Enhancement of Heat Transfer for Thermal Energy Storage Application Using Stearic Acid Nanocomposite with Multi-Walled Carbon Nanotubes. Energy. 2013, 55, 752–761. DOI: 10.1016/j.energy.2013.04.010.
  • Habib, N. A.; Ali, A. J.; Chaichan, M. T.; Kareem, M. Carbon Nanotubes/Paraffin Wax Nanocomposite for Improving the Performance of a Solar Air Heating System. Therm. Sci. Eng. Prog. 2021, 23, 100877. DOI: 10.1016/j.tsep.2021.100877.
  • Farbod, M.; Ahangarpour, A.; Etemad, S. G. Stability and Thermal Conductivity of Water-Based Carbon Nanotube Nanofluids. Particuology. 2015, 22, 59–65. DOI: 10.1016/j.partic.2014.07.005.
  • Farbod, M.; Tadavani, S. K.; Kiasat, A. Surface Oxidation and Effect of Electric Field on Dispersion and Colloids Stability of Multiwalled Carbon Nanotubes. Colloids Surf. A Physicochem. Eng. Asp. 2011, 384, 685–690. DOI: 10.1016/j.colsurfa.2011.05.041.
  • Ferreira, F. V.; Francisco, W.; de Menezes, B. R. C.; Cividanes, L. D. S.; dos Reis Coutinho, A.; Thim, G. P. Carbon Nanotube Functionalized with Dodecylamine for the Effective Dispersion in Solvents. Appl. Surf. Sci. 2015, 357, 2154–2159. DOI: 10.1016/j.apsusc.2015.09.202.
  • Farbod, M.; Madadi Jaberi, M. Fabrication of Graphene Aerogel and Graphene/Carbon Nanotube Composite Aerogel by Freeze Casting under Ambient Pressure and Comparison of Their Properties. Fuller. Nanotub. Carbon Nanostruct. 2021, 29, 244–250. DOI: 10.1080/1536383X.2020.1832995.
  • Cividanes, L. S.; Brunelli, D. D.; Antunes, E. F.; Corat, E. J.; Sakane, K. K.; Thim, G. P. Cure Study of Epoxy Resin Reinforced with Multiwalled Carbon Nanotubes by Raman and Luminescence Spectroscopy. J. Appl. Polym. Sci. 2013, 127, 544–553. DOI: 10.1002/app.37815.
  • Ma, P. C.; Kim, J. K.; Tang, B. Z. Functionalization of Carbon Nanotubes Using a Silane Coupling Agent. Carbon. 2006, 44, 3232–3238. DOI: 10.1016/j.carbon.2006.06.032.
  • Yuen, S. M.; Ma, C. C. M.; Lin, Y. Y.; Kuan, H. C. Preparation, Morphology and Properties of Acid and Amine Modified Multiwalled Carbon Nanotube/Polyimide Composite. Compos Sci. Technol. 2007, 67, 2564–2573. DOI: 10.1016/j.compscitech.2006.12.006.
  • Lehman, J. H.; Terrones, M.; Mansfield, E.; Hurst, K. E.; Meunier, V. Evaluating the Characteristics of Multiwall Carbon Nanotubes. Carbon. 2011, 49, 2581–2602. DOI: 10.1016/j.carbon.2011.03.028.
  • Almousa, N. H.; Alotaibi, M. R.; Alsohybani, M.; Radziszewski, D.; AlNoman, S. M.; Alotaibi, B. M.; Khayyat, M. M. Paraffin Wax [as a Phase Changing Material (PCM)] Based Composites Containing Multi-Walled Carbon Nanotubes for Thermal Energy Storage (TES) Development. Crystals. 2021, 11, 951. DOI: 10.3390/cryst1108095.
  • Chen, G.; Su, Y.; Jiang, D.; Pan, L.; Li, S. An Experimental and Numerical Investigation on a Paraffin Wax/Graphene Oxide/Carbon Nanotubes Composite Material for Solar Thermal Storage Applications. Appl. Energy. 2020, 264, 114786. DOI: 10.1016/j.apenergy.2020.114786.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.