190
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Comparative study of hydrogen storage in green synthesized porous biocarbon and N/S doped biocarbon

ORCID Icon
Pages 1200-1207 | Received 31 Aug 2023, Accepted 12 Sep 2023, Published online: 28 Sep 2023

References

  • Cheng, H. M.; Yang, Q. H.; Liu, C. Hydrogen Storage in Carbon Nanotubes. Carbon 2001, 39, 1447–1454. DOI: 10.1016/S0008-6223(00)00306-7.
  • Esswein, A. J.; Nocera, D. G. Hydrogen Production by Molecular Photocatalysis. Chem. Rev. 2007, 107, 4022–4047. DOI: 10.1021/cr050193e.
  • Kaskun, S. Hydrogen Production from Sawdust Pyrolysis Catalysed by TiO2 Impregnated Al2O3 Nanoparticles. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 2022, 11, 99–105. DOI: 10.17798/bitlisfen.997799.
  • Nicoletti, G.; Arcuri, N.; Nicoletti, G.; Bruno, R. A Technical and Environmental Comparison between Hydrogen and Some Fossil Fuels. Energy Convers. Manag. 2015, 89, 205–213. DOI: 10.1016/j.enconman.2014.09.057.
  • Rimza, T.; Saha, S.; Dhand, C.; Dwivedi, N.; Patel, S. S.; Singh, S.; Kumar, P. Carbon‐Based Sorbents for Hydrogen Storage: Challenges and Sustainability at Operating Conditions for Renewable Energy. ChemSusChem 2022, 15, e202200281. DOI: 10.1002/cssc.202200281.
  • Karayel, G. K.; Javani, N.; Dincer, I. A Comprehensive Assessment of Energy Storage Options for Green Hydrogen. Energy Convers. Manag. 2023, 291, 117311. DOI: 10.1016/j.enconman.2023.117311.
  • Shiraz, H. G.; Shiraz, M. G. Palladium Nanoparticle and Decorated Carbon Nanotube for Electrochemical Hydrogen Storage. Int. J. Hydrog. Energy 2017, 42, 11528–11533. DOI: 10.1016/j.ijhydene.2017.03.129.
  • Kaskun, S.; Kayfeci, M. The Synthesized Nickel-Doped Multi-Walled Carbon Nanotubes for Hydrogen Storage under Moderate Pressures. Int. J. Hydrog. Energy 2018, 43, 10773–10778. DOI: 10.1016/j.ijhydene.2018.01.084.
  • Yang, Z.; Xia, Y.; Sun, X.; Mokaya, R. Preparation and Hydrogen Storage Properties of Zeolite-Templated Carbon Materials Nanocast via Chemical Vapor Deposition: Effect of the Zeolite Template and Nitrogen Doping. J. Phys. Chem. B 2006, 110, 18424–18431. DOI: 10.1021/jp0639849.
  • Liu, M.; Xiao, X.; Zhao, S.; Chen, M.; Mao, J.; Luo, B.; Chen, L. Facile Synthesis of Co/Pd Supported by Few-Walled Carbon Nanotubes as an Efficient Bidirectional Catalyst for İmproving the Low Temperature Hydrogen Storage Properties of Magnesium Hydride. J. Mater. Chem. A 2019, 7, 5277–5287. DOI: 10.1039/C8TA12431K.
  • Jastrzębski, K.; Kula, P. Emerging Technology for a Green, Sustainable Energy-Promising Materials for Hydrogen Storage, from Nanotubes to Graphene—A Review. Materials 2021, 14, 2499. DOI: 10.3390/ma14102499.
  • Ong, Y. T.; Ahmad, A. L.; Zein, S. H. S.; Tan, S. H. A Review on Carbon Nanotubes in an Environmental Protection and Green Engineering Perspective. Braz. J. Chem. Eng. 2010, 27, 227–242. DOI: 10.1590/S0104-66322010000200002.
  • Chalk, S. G.; Miller, J. F. Key Challenges and Recent Progress in Batteries, Fuel Cells, and Hydrogen Storage for Clean Energy Systems. J. Power Sources 2006, 159, 73–80. DOI: 10.1016/j.jpowsour.2006.04.058.
  • Gangu, K. K.; Maddila, S.; Mukkamala, S. B.; Jonnalagadda, S. B. Characteristics of MOF, MWCNT and Graphene Containing Materials for Hydrogen Storage: A Review. J. Energy Chem. 2019, 30, 132–144. DOI: 10.1016/j.jechem.2018.04.012.
  • Demir, M.; Tessema, T.-D.; Farghaly, A. A.; Nyankson, E.; Saraswat, S. K.; Aksoy, B.; Islamoglu, T.; Collinson, M. M.; El-Kaderi, H. M.; Gupta, R. B. Lignin‐Derived Heteroatom‐Doped Porous Carbons for Supercapacitor and CO2 Capture Applications. Int. J. Energy Res. 2018, 42, 2686–2700. DOI: 10.1002/er.4058.
  • Lahiri, I.; Choi, W. Carbon Nanostructures in Lithium İon Batteries: Past, Present, and Future. Crit. Rev. Solid State Mater. Sci. 2013, 38, 128–166. DOI: 10.1080/10408436.2012.729765.
  • Rana, M.; Arora, G.; Gautam, U. K. N-and S-Doped High Surface Area Carbon Derived from Soya Chunks as Scalable and Efficient Electrocatalysts for Oxygen Reduction. Sci. Technol. Adv. Mater. 2015, 16, 014803. DOI: 10.1088/1468-6996/16/1/014803.
  • Wang, Q.; Zhang, Y.; Jiang, H.; Meng, C. In-Situ Grown Manganese Silicate from Biomass-Derived Heteroatom-Doped Porous Carbon for Supercapacitors with High Performance. J. Colloid Interface Sci. 2019, 534, 142–155. DOI: 10.1016/j.jcis.2018.09.026.
  • Nechaev, Y. S.; Denisov, E. A.; Cheretaeva, A. O.; Davydov, S. Y.; Öchsner, A. On the Real Possibility of “Super” Hydrogen İntercalation into Graphite Nanofibers. Fuller. Nanotub. Carbon Nanostruct. 2022, 30, 211–219. DOI: 10.1080/1536383X.2022.2029424.
  • Zhao, T.; Ji, X.; Jin, W.; Yang, W.; Li, T. Hydrogen Storage Capacity of Single-Walled Carbon Nanotube Prepared by a Modified Arc Discharge. Fuller. Nanotub. Carbon Nanostruct. 2017, 25, 355–358. DOI: 10.1080/1536383X.2017.1305358.
  • Mahdy, A. E. DFT Study of Hydrogen Storage in Pd-Decorated C60 Fullerene. Mol. Phys. 2015, 113, 3531–3544. DOI: 10.1080/00268976.2015.1039090.
  • Karatepe, N.; Yuca, N.; Şenkal, B. F. Synthesis of Carbon-Based Nano Materials for Hydrogen Storage. Fuller. Nanotub. Carbon Nanostruct. 2013, 21, 31–46. DOI: 10.1080/1536383X.2011.574323.
  • Song, Y.; Wu, X.; Yin, P.; Yang, Z.; Xu, Y.; Liu, X.; Sun, W.; Wang, F.; Cai, H.; Xu, Q. Enhanced Electrochemical Hydrogen Storage Performance of Organophosphonic Carboxylic Acid-Modified Multiwalled Carbon Nanotubes/Bi2S3 Composite. Fuller. Nanotub. Carbon Nanostruct. 2022, 30, 820–829. DOI: 10.1080/1536383X.2022.2026332.
  • Wakayama, H. Hydrogen Storage of a Mechanically Milled Carbon Material Fabricated by Plasma Chemical Vapor Deposition. Fuller. Nanotub. Carbon Nanostruct. 2020, 28, 841–845. DOI: 10.1080/1536383X.2020.1769608.
  • Jäntschi, L. Nanoporous Carbon, İts Pharmaceutical Applications and Metal Organic Frameworks. J. Incl. Phenom. Macrocycl. Chem. 2023, 103, 245–261. DOI: 10.1007/s10847-023-01194-1.
  • Çalışır, Ü.; Çiçek, B.; Doğan, M. Microwave-Assisted Cross-Coupling Synthesis of Aryl Functionalized MWCNTs and İnvestigation of Hydrogen Storage Properties. Fuller. Nanotub. Carbon Nanostruct. 2021, 29, 899–906. DOI: 10.1080/1536383X.2021.1913727.
  • Zhou, Q.; Wang, C.; Fu, Z.; Yuan, L.; Yang, X.; Tang, Y.; Zhang, H. Hydrogen Adsorption on Palladium Anchored Defected Graphene with B-Doping: A Theoretical Study. Int. J. Hydrog. Energy 2015, 40, 2473–2483. DOI: 10.1016/j.ijhydene.2014.12.071.
  • Wang, L.; Lee, K.; Sun, Y. Y.; Lucking, M.; Chen, Z.; Zhao, J. J.; Zhang, S. B. Graphene Oxide as an İdeal Substrate for Hydrogen Storage. ACS Nano. 2009, 3, 2995–3000. DOI: 10.1021/nn900667s.
  • Chen, T.; Zhou, Y.; Luo, L.; Wu, X.; Li, Z.; Fan, M.; Zhao, W. Preparation and Characterization of Heteroatom Self-Doped Activated Biocarbons as Hydrogen Storage and Supercapacitor Electrode Materials. Electrochim. Acta 2019, 325, 134941. DOI: 10.1016/j.electacta.2019.134941.
  • Shaheen Shah, S.; Abu Nayem, S. M.; Sultana, N.; Saleh Ahammad, A. J.; Abdul Aziz, M. Preparation of Sulfur‐Doped Carbon for Supercapacitor Applications: A Review. ChemSusChem 2022, 15, e202101282. DOI: 10.1002/cssc.202101282.
  • Vijayaraghavan, K. Recent Advancements in Biochar Preparation, Feedstocks, Modification, Characterization and Future Applications. Environ. Technol. Rev. 2019, 8, 47–64. DOI: 10.1080/21622515.2019.1631393.
  • Demir, M.; Kahveci, Z.; Aksoy, B.; Palapati, N. K. R.; Subramanian, A.; Cullinan, H. T.; El-Kaderi, H. M.; Harris, C. T.; Gupta, R. B. Graphitic Biocarbon from Metal-Catalyzed Hydrothermal Carbonization of Lignin. Ind. Eng. Chem. Res. 2015, 54, 10731–10739. DOI: 10.1021/acs.iecr.5b02614.
  • Bedin, K. C.; Cazetta, A. L.; Souza, I. P.; Pezoti, O.; Souza, L. S.; Souza, P. S.; Yokoyama, J. T.; Almeida, V. C. Porosity Enhancement of Spherical Activated Carbon: Influence and Optimization of Hydrothermal Synthesis Conditions Using Response Surface Methodology. J. Environ. Chem. Eng. 2018, 6, 991–999. DOI: 10.1016/j.jece.2017.12.069.
  • Jin, S.; Chung, B.; Park, H. J.; Cunning, B. V.; Lee, J.; Yoon, A.; Huang, M.; Seo, H.; Lee, D.; Lee, Z.; et al. Ultrahigh Strength and Modulus Graphene‐Based Hybrid Carbons with AB‐Stacked and Turbostratic Structures. Adv. Funct. Mater. 2020, 30, 2005381. DOI: 10.1002/adfm.202005381.
  • Li, J.; Wang, N.; Deng, J.; Qian, W.; Chu, W. Flexible Metal-Templated Fabrication of Mesoporous Onion-like Carbon and Fe2O3@ N-Doped Carbon Foam for Electrochemical Energy Storage. J. Mater. Chem. A 2018, 6, 13012–13020. DOI: 10.1039/C8TA02417K.
  • Ouzilleau, P.; Gheribi, A. E.; Chartrand, P. The Graphitization Temperature Threshold Analyzed through a Second-Order Structural Transformation. Carbon 2016, 109, 896–908. DOI: 10.1016/j.carbon.2016.08.041.
  • Major, I.; Pin, J. M.; Behazin, E.; Rodriguez-Uribe, A.; Misra, M.; Mohanty, A. Graphitization of Miscanthus Grass Biocarbon Enhanced by in Situ Generated FeCo Nanoparticles. Green Chem. 2018, 20, 2269–2278. DOI: 10.1039/C7GC03457A.
  • Wang, L.; Zheng, Y.; Zhang, Q.; Zuo, L.; Chen, S.; Chen, S.; Hou, H.; Song, Y. Template-Free Synthesis of Hierarchical Porous Carbon Derived from Low-Cost Biomass for High-Performance Supercapacitors. RSC Adv. 2014, 4, 51072–51079. DOI: 10.1039/C4RA07955H.
  • Lee, K. T.; Lytle, J. C.; Ergang, N. S.; Oh, S. M.; Stein, A. Synthesis and Rate Performance of Monolithic Macroporous Carbon Electrodes for Lithium‐İon Secondary Batteries. Adv. Funct. Mater. 2005, 15, 547–556. DOI: 10.1002/adfm.200400186.
  • Chen, J.; Mao, Z.; Zhang, L.; Wang, D.; Xu, R.; Bie, L.; Fahlman, B. D. Nitrogen-Deficient Graphitic Carbon Nitride with Enhanced Performance for Lithium İon Battery Anodes. ACS Nano. 2017, 11, 12650–12657. DOI: 10.1021/acsnano.7b07116.
  • Sun, F.; Wang, L.; Peng, Y.; Gao, J.; Pi, X.; Qu, Z.; Zhao, G.; Qin, Y. Converting Biomass Waste into Microporous Carbon with Simultaneously High Surface Area and Carbon Purity as Advanced Electrochemical Energy Storage Materials. Appl. Surf. Sci. 2018, 436, 486–494. DOI: 10.1016/j.apsusc.2017.12.067.
  • Aydin, M. I.; Dincer, I. An Assessment Study on Various Clean Hydrogen Production Methods. Energy 2022, 245, 123090. DOI: 10.1016/j.energy.2021.123090.
  • Salehi, F.; Abbassi, R.; Asadnia, M.; Chan, B.; Chen, L. Overview of Safety Practices in Sustainable Hydrogen Economy–An Australian Perspective. Int. J. Hydrog. Energy 2022, 47, 34689–34703. DOI: 10.1016/j.ijhydene.2022.08.041.
  • Yuan, W.; Li, B.; Li, L. A Green Synthetic Approach to Graphene Nanosheets for Hydrogen Adsorption. Appl. Surf. Sci. 2011, 257, 10183–10187. DOI: 10.1016/j.apsusc.2011.07.015.
  • Ariharan, A.; Viswanathan, B.; Nandhakumar, V. Nitrogen Doped Graphene as Potential Material for Hydrogen Storage. Graphene 2017, 06, 41–60. DOI: 10.4236/graphene.2017.62004.
  • Wang, Z.; Sun, L.; Xu, F.; Zhou, H.; Peng, X.; Sun, D.; Wang, J.; Du, Y. Nitrogen-Doped Porous Carbons with High Performance for Hydrogen Storage. Int. J. Hydrog. Energy 2016, 41, 8489–8497. DOI: 10.1016/j.ijhydene.2016.03.023.
  • Sa, Y. J.; Park, C.; Jeong, H. Y.; Park, S.-H.; Lee, Z.; Kim, K. T.; Park, G.-G.; Joo, S. H. Carbon Nanotubes/Heteroatom‐Doped Carbon Core–Sheath Nanostructures as Highly Active, Metal‐Free Oxygen Reduction Electrocatalysts for Alkaline Fuel Cells. Angew. Chem. 2014, 126, 4186–4190. DOI: 10.1002/ange.201307203.
  • Zhao, W.; Luo, L.; Chen, T.; Li, Z.; Zhang, Z.; Wang, H.; Rao, J.; Feo, L.; Fan, M. Synthesis and Characterization of Pt-N-Doped Activated Biocarbon Composites for Hydrogen Storage. Comp. B Eng. 2019, 161, 464–472. DOI: 10.1016/j.compositesb.2018.12.122.
  • Kim, G.; Jhi, S. H.; Park, N. Effective Metal Dispersion in Pyridinelike Nitrogen Doped Graphenes for Hydrogen Storage. Appl. Phys. Lett. 2008, 92, 013106. DOI: 10.1063/1.2828976.
  • Yang, L.; Yu, L. L.; Wei, H. W.; Li, W. Q.; Zhou, X.; Tian, W. Q. Hydrogen Storage of Dual-Ti-Doped Single-Walled Carbon Nanotubes. Int. J. Hydrog. Energy 2019, 44, 2960–2975. DOI: 10.1016/j.ijhydene.2018.12.028.
  • Sevilla, M.; Fuertes, A. B.; Mokaya, R. Preparation and Hydrogen Storage Capacity of Highly Porous Activated Carbon Materials Derived from Polythiophene. Int. J. Hydrog. Energy 2011, 36, 15658–15663. DOI: 10.1016/j.ijhydene.2011.09.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.