326
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A comprehensive review of carbon nanotubes: growth mechanisms, preparation and applications

, , , , &
Pages 415-429 | Received 16 Nov 2023, Accepted 04 Dec 2023, Published online: 27 Dec 2023

References

  • Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. DOI: 10.1038/354056a0.
  • Liu, C.; Cong, H.; Li, F.; Tan, P.; Cheng, H. M.; Lu, K.; Zhou, B. Semi-Continuous Synthesis of Single-Walled Carbon Nanotubes by a Hydrogen Arc Discharge Method. Carbon 1999, 37, 1865–1868. DOI: 10.1016/S0008-6223(99)00196-7.
  • Chaudhary, K. T.; Ali, J.; Yupapin, P. P. Growth of Small Diameter Multi-Walled Carbon Nanotubes by Arc Discharge Process. Chin. Phys. B 2014, 23, 035203. DOI: 10.1088/1674-1056/23/3/035203.
  • Thess, A.; Lee, R.; Nikolaev, P. N.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S.-G.; Rinzler, A. G.; et al. Crystalline Ropes of Metallic Carbon Nanotubes. Science 1996, 273, 483–48 7. DOI: 10.1126/science.273.5274.483.
  • Sinnott, S. B.; Andrews, R.; Qian, D.; Rao, A. M.; Mao, Z.; Dickey, E. C.; Derbyshire, F. J. Model of Carbon Nanotube Growth through Chemical Vapor Deposition. Chem. Phys. Lett. 1999, 315, 25–30. DOI: 10.1016/S0009-2614(99)01216-6.
  • Tessonnier, J.-P.; Su, D. S. Recent Progress on the Growth Mechanism of Carbon Nanotubes: A Review. ChemSusChem 2011, 4, 824–847. DOI: 10.1002/cssc.201100175.
  • Maria, K. H.; Mieno, T. Synthesis of Single-Walled Carbon Nanotubes by Low-Frequency Bipolar Pulsed Arc Discharge Method. Vacuum 2015, 113, 11–18. DOI: 10.1016/j.vacuum.2014.11.025.
  • Huang, L.; Wu, B.; Chen, J.; Xue, Y.; Liu, Y.; Kajiura, H.; Li, Y. Synthesis of Single-Walled Carbon Nanotubes by an Arc-Discharge Method Using Selenium as a Promoter. Carbon 2011, 49, 4792–4800. DOI: 10.1016/j.carbon.2011.06.091.
  • Zhao, J.; Wei, L.; Yang, Z.; Zhang, Y. Continuous and Low-Cost Synthesis of High-Quality Multi-Walled Carbon Nanotubes by Arc Discharge in Air. Phys. E-Low Dimens. Syst. Nanostruct. 2012, 44, 1639–1643. DOI: 10.1016/j.physe.2012.04.010.
  • Bin, L.; Chen, X.; Chen, J.; Chen, S.; Lu, R.; Liang, S.-J.; Cui, X.; Chi, H.; Zou, L. Facile Synthesis of Homogeneous Dispersed Carbon Nanotubes on Tc4 Alloy Powder by in-Situ Cvd and Its Growth Behavior. SSRN Electr. J. 2023, 24, 9928–9938. DOI: 10.1016/j.jmrt.2023.05.127.
  • Zhang, Z.; Dong, H.; Liao, Y.; Xiong, X.; Yan, J.; Li, H.; Lv, L.; Zhou, X.-L.; Gao, Y. Controlled Synthesis of Single-Walled Carbon Nanotubes by Floating Catalyst CVD for Transparent Conducting Films: A Critical Role of Loops. Diamond Relat. Mater. 2022, 124, 108942. DOI: 10.1016/j.diamond.2022.108942.
  • Gakis, G. P.; Termine, S.; Trompeta, A.-F.; Aviziotis, I. G.; Charitidis, C. A. Unraveling the Mechanisms of Carbon Nanotube Growth by Chemical Vapor Deposition. Chem. Eng. J. 2022, 445, 136807. DOI: 10.1016/j.cej.2022.136807.
  • Al Baroot, A.; Elsayed, K.; Haladu, S. A.; Magami, S. M.; Alheshibri, M. H.; Ercan, F.; Çevik, E.; Akhtar, S. A.; Manda, A.; Kayed, T. S.; et al. One-Pot Synthesis of SnO2 Nanoparticles Decorated Multi-Walled Carbon Nanotubes Using Pulsed Laser Ablation for Photocatalytic Applications. Opt. Laser Technol. 2023, 157, 108734. DOI: 10.1016/j.optlastec.2022.108734.
  • Kang, S. H.; Han, H.; Mhin, S.; Chae, H. R.; Kim, W. R.; Kim, K. M. Ni-Doped Carbon Nanotubes Fabricated by Pulsed Laser Ablation in Liquid as Efficient Electrocatalysts for Oxygen Evolution Reaction. Appl. Surf. Sci. 2021, 547, 149197. DOI: 10.1016/j.apsusc.2021.149197.
  • Mwafy, E. A.; Mostafa, A. M. Multi Walled Carbon Nanotube Decorated Cadmium Oxide Nanoparticles via Pulsed Laser Ablation in Liquid Media. Opt. Laser Technol. 2019, 111, 249–254. DOI: 10.1016/j.optlastec.2018.09.055.
  • Page, A. J.; Chandrakumar, K. R. S.; Irle, S.; Morokuma, K. SWNT Nucleation from Carbon-Coated SiO2 Nanoparticles via a Vapor-Solid-Solid Mechanism. J. Am. Chem. Soc. 2011, 133, 621–628. DOI: 10.1021/ja109018h.
  • Lee, J. H.; Geer, R. E. Templated Si-based Nanowires via Solid-Liquidsolid (SLS) and Vapor-Liquid-Solid (VLS) Growth: Novel Growth Mode, Synthesis, Morphology Control, Characteristics, and Electrical Transport, F. 2010.
  • Gonçalves, R. A.; da Silva Barros, H. H.; Araujo, L. S.; Antunes, E. F.; Quade, A.; Teodoro, M. D.; Baldan, M. R.; Berengue, O. M. Suppression of Vapor-Liquid-Solid (VLS) Mechanism in the Growth of α-Sb2O4 Nanobelts by a Vapor-Deposition Approach. Mater. Sci. Semicond. Process. 2021, 134, 106006. DOI: 10.1016/j.mssp.2021.106006.
  • Yang, F.; Zhao, H.; Li, R.; Liu, Q.; Zhang, X.; Bai, X.; Wang, R.; Li, Y. Growth Modes of Single-Walled Carbon Nanotubes on Catalysts. Sci. Adv. 2022, 8, eabq0794. DOI: 10.1126/sciadv.abq0794.
  • Narkiewicz, U.; Podsiadły, M.; Jędrzejewski, R.; Pełech, I. Catalytic Decomposition of Hydrocarbons on Cobalt, Nickel and Iron Catalysts to Obtain Carbon Nanomaterials. Appl. Catal. A-Gen. 2010, 384, 27–35. DOI: 10.1016/j.apcata.2010.05.050.
  • He, M.; Yang, T.; Shang, D.; Xin, B.; Chernov, A. I.; Obraztsova, E. D.; Sainio, J.; Wei, N.; Cui, H.; Jiang, H. W.; Kauppinen, E. I. High Temperature Growth of Single-Walled Carbon Nanotubes with a Narrow Chirality Distribution by Tip-Growth Mode. Chem. Eng. J. 2018, 341, 344–350. DOI: 10.1016/j.cej.2018.02.051.
  • He, M.; Magnin, Y.; Jiang, H. W.; Amara, H.; Kauppinen, E. I.; Loiseau, A.; Bichara, C. Growth Modes and Chiral Selectivity of Single-Walled Carbon Nanotubes. Nanoscale 2018, 10, 6744–6750. DOI: 10.1039/c7nr09539b.
  • Ji, Z.; Zhang, L.; Tang, D.; Zhao, Y.; Zou, M.; Xie, R.-H.; Liu, C.; Cheng, H. Statistical Patterns in High-Throughput Growth of Single-Wall Carbon Nanotubes from Co/Pt/Mo Ternary Catalysts. SSRN J. 2022, 210, 118073. DOI: 10.2139/ssrn.4305767.
  • Liu, Y.; Inoue, T.; Wang, M.; Arifuku, M.; Kiyoyanagi, N.; Kobayashi, Y. Gas Flow–Directed Growth of Aligned Carbon Nanotubes from Nonmetallic Seeds. Carbon 2023, 214, 118309. DOI: 10.1016/j.carbon.2023.118309.
  • Khabushev, E. M.; Krasnikov, D.; Goldt, A. E.; Fedorovskaya, E. O.; Tsapenko, A. P.; Zhang, Q.; Kauppinen, E. I.; Kallio, T.; Nasibulin, A. G. Joint Effect of Ethylene and Toluene on Carbon Nanotube Growth. Carbon 2021, 189, 474–483. DOI: 10.1016/j.carbon.2021.12.052.
  • Kinoshita, T.; Karita, M.; Chikyu, N.; Nakano, T.; Inoue, Y. Enhancement of Catalytic Activity by Addition of Chlorine in Chemical Vapor Deposition Growth of Carbon Nanotube Forests. Carbon 2022, 196, 391–400. DOI: 10.1016/j.carbon.2022.04.075.
  • Wu, Q.; Zhang, H.; Ma, C.; Li, D. N.; Xin, L.; Zhang, X.; Zhao, N.; He, M. SiO2-Promoted Growth of Single-Walled Carbon Nanotubes on an Alumina Supported Catalyst. Carbon 2021, 176, 367–373. DOI: 10.1016/j.carbon.2021.01.143.
  • Pezone, R.; Vollebregt, S.; Sarro, P. M.; Unnikrishnan, S. The Influence of H2 and NH3 on Catalyst Nanoparticle Formation and Carbon Nanotube Growth. Carbon 2020, 170, 384–393. DOI: 10.1016/j.carbon.2020.07.045.
  • Amama, P. B.; Pint, C. L.; Mcjilton, L.; Kim, S. M.; Stach, E. A.; Murray, P. T.; Hauge, R. H.; Maruyama, B. Role of Water in Super Growth of Single-Walled Carbon Nanotube Carpets. Nano Lett. 2009, 9, 44–49. DOI: 10.1021/nl801876h.
  • Geng, J.; Motta, M. S.; Engels, V.; Luo, J.; Johnson, B. F. G. Temperature Threshold and Water Role in CVD Growth of Single-Walled Carbon Nanotubes. Front. Mater. 2016, 3, 4. DOI: 10.3389/fmats.2016.00004.
  • Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes. Science 2004, 306, 1362–1364. DOI: 10.1126/science.1104962.
  • Sato, T.; Sugime, H.; Noda, S. CO2-Assisted Growth of Millimeter-Tall Single-Wall Carbon Nanotube Arrays and Its Advantage against H2O for Large-Scale and Uniform Synthesis. Carbon 2018, 136, 143–149. DOI: 10.1016/j.carbon.2018.04.060.
  • Zhang, G.; Mann, D. M. A.; Zhang, L.; Javey, A.; Li, Y.; Yenilmez, E.; Wang, Q.; Mcvittie, J. P.; Nishi, Y.; Gibbons, J. F.; Dai, H. Ultra-High-Yield Growth of Vertical Single-Walled Carbon Nanotubes: Hidden Roles of Hydrogen and Oxygen. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 16141–16145. DOI: 10.1073/pnas.0507064102.
  • Zhang, F.; Sun, J.; Zheng, Y.; Hou, P.-X.; Liu, C.; Cheng, M.; Li, X.; Cheng, H. M.; Chen, Z. The Importance of H2 in the Controlled Growth of Semiconducting Single-Wall Carbon Nanotubes. J. Mater. Sci. Technol. 2020, 54, 105–111. DOI: 10.1016/j.jmst.2020.02.067.
  • Sugime, H.; Sato, T.; Nakagawa, R.; Cepek, C.; Noda, S. Gd-Enhanced Growth of Multi-Millimeter-Tall Forests of Single-Wall Carbon Nanotubes. ACS Nano. 2019, 13, 13208–13216. DOI: 10.1021/acsnano.9b06181.
  • Iakovlev, V. Y.; Krasnikov, D. V.; Khabushev, E. M.; Kolodiazhnaia, J.; Nasibulin, A. G. Artificial Neural Network for Predictive Synthesis of Single-Walled Carbon Nanotubes by Aerosol CVD Method. Carbon 2019, 153, 100–103. DOI: 10.1016/j.carbon.2019.07.013.
  • Ji, Z.; Zhang, L.; Tang, D.; Chen, C.-M.; Nordling, T. E. M.; Zhang, Z.-D.; Ren, C. L.; Da, B.; Li, X.; Guo, S.-Y.; et al. High-Throughput Screening and Machine Learning for the Efficient Growth of High-Quality Single-Wall Carbon Nanotubes. Nano Res. 2021, 14, 4610–4615. DOI: 10.1007/s12274-021-3387-y.
  • Rao, R.; Carpena-Núñez, J.; Nikolaev, P. N.; Susner, M. A.; Reyes, K. G.; Maruyama, B. Advanced Machine Learning Decision Policies for Diameter Control of Carbon Nanotubes. Npj Comput. Mater. 2021, 7, 157. DOI: 10.1038/s41524-021-00629-y.
  • Alred, J. M.; Bets, K. V.; Xie, Y.; Yakobson, B. I. Machine Learning Electron Density in Sulfur Crosslinked Carbon Nanotubes. Compos. Sci. Technol. 2018, 166, 3–9. DOI: 10.1016/j.compscitech.2018.03.035.
  • Liu, B.; Vu-Bac, N.; Zhuang, X.; Fu, X.; Rabczuk, T. Stochastic Integrated Machine Learning Based Multiscale Approach for the Prediction of the Thermal Conductivity in Carbon Nanotube Reinforced Polymeric Composites. Compos. Sci. Technol. 2022, 224, 109425. DOI: 10.1016/j.compscitech.2022.109425.
  • Zhang, J.; Perrin, M. L.; Barba, L.; Overbeck, J.; Jung, S.; Grassy, B.; Agal, A.; Muff, R.; Brönnimann, R.; Haluska, M.; et al. High-Speed Identification of Suspended Carbon Nanotubes Using Raman Spectroscopy and Deep Learning. Microsyst. Nanoeng. 2022, 8, 19. DOI: 10.1038/s41378-022-00350-w.
  • Yadav, U.; Pathrudkar, S.; Ghosh, S. An Interpretable Machine Learning Model for Deformation of Multi-Walled Carbon Nanotubes, F, 2020.
  • Krasnikov, D. V.; Khabushev, E. M.; Gaev, A.; Bogdanova, A. R.; Iakovlev, V. Y.; Lantsberg, A. V.; Kallio, T.; Nasibulin, A. G. Machine Learning Methods for Aerosol Synthesis of Single-Walled Carbon Nanotubes. Carbon 2022, 202, 76–82. DOI: 10.1016/j.carbon.2022.10.044.
  • Song, G.; Li, C.; Zhou, W.; Wu, L.; Hui Lim, K.; Hu, F.; Wang, T.; Liu, S.; Ren, Z.; Kawi, S. Catalytic Decomposition of Methane for Controllable Production of Carbon Nanotubes and High Purity H2 over LTA Zeolite-Derived Ni-Based Yolk-Shell Catalysts. Chem. Eng. J. 2023, 474, 145643. DOI: 10.1016/j.cej.2023.145643.
  • Gao, Y.; Han, F.; Li, Y.; Qin, X.; Li, D. N.; Wu, Q.; Lin, G.; Zhang, X.; He, M. Supported Catalysts Derived from Cobalt Phyllosilicates for Chemical Vapor Deposition Growth of Single-Walled Carbon Nanotubes. Carbon 2023, 215, 118491. DOI: 10.1016/j.carbon.2023.118491.
  • Chen, X.; Duan, H.; Cao, B. The Evolution Mechanism of Mo Catalyst at the Initial Stage of Catalytic Growth of Single-Walled Carbon Nanotubes. Carbon 2023, 211, 118106. DOI: 10.1016/j.carbon.2023.118106.
  • Zhang, F.; Zhang, L.; Jiang, H. W.; Li, X.; Liu, F.; Ji, Z.; Hou, P.-X.; Guo, S.; Cheng, H.; Kauppinen, E. I.; et al. Growth of High-Density Single-Wall Carbon Nanotubes with a Uniform Structure Using a CoRu Catalyst. Carbon 2023, 209, 118011. DOI: 10.1016/j.carbon.2023.118011.
  • Li, M.; Yasui, K.; Sugime, H.; Noda, S. Enhanced CO2-Assisted Growth of Single-Wall Carbon Nanotube Arrays Using Fe/Alo Catalyst Annealed without CO2. Carbon 2021, 185, 264–271. DOI: 10.1016/j.carbon.2021.09.031.
  • Liu, W.; Zhang, S.; Qian, L.; Lin, D.; Zhang, J. Growth of High-Density Horizontal SWNT Arrays Using Multi-Cycle in-Situ Loading Catalysts. Carbon 2020, 157, 164–168. DOI: 10.1016/j.carbon.2019.10.002.
  • Wang, H.; Gu, G.; Chen, Q.; Xuefei, F.; Chen, Y. Cobalt Sulfide Catalysts for Single-Walled Carbon Nanotube Synthesis. Diamond Relat. Mater. 2021, 114, 108288. DOI: 10.1016/j.diamond.2021.108288.
  • Henry, C. R. Morphology of Supported Nanoparticles. Prog. Surf. Sci. 2005, 80, 92–116. DOI: 10.1016/j.progsurf.2005.09.004.
  • Mattevi, C.; Wirth, C. T.; Hofmann, S.; Blume, R.; Cantoro, M.; Ducati, C.; Cepek, C.; Knop‐Gericke, A.; Milne, S.; Castellarin-Cudia, C.; et al. In-Situ X-Ray Photoelectron Spectroscopy Study of Catalyst − Support Interactions and Growth of Carbon Nanotube Forests. J. Phys. Chem. C 2008, 112, 12207–12213. DOI: 10.1021/jp802474g.
  • Zhang, A.; Liu, Y.; Wu, J.; Zhu, J.; Cheng, S.; Wang, Y.; Hao, Y.; Zeng, S. Electrocatalytic Selectivity to H2o2 Enabled by Two-Electron Pathway on Cu-Deficient Au@Cu2-Xs-Cnts Electrocatalysts. SSRN J. 2022, 454, 140317. DOI: 10.2139/ssrn.4216106.
  • Yan, L.; Xu, Z.; Liu, X.; Mahmood, S.; Shen, J.; Ning, J.; Li, S.; Zhong, Y.; Hu, Y. Integrating Trifunctional Co@NC-CNTs@NiFe-LDH Electrocatalysts with Arrays of Porous Triangle Carbon Plates for High-Power-Density Rechargeable Zn-Air Batteries and Self-Powered Water Splitting. Chem. Eng. J. 2022, 446, 137049. DOI: 10.1016/j.cej.2022.137049.
  • Hai Nguyen, T.; Khanh Linh Tran, P.; Thanh Tran, D.; Ngoc Pham, T.; Hoon Kim, N.; Hee Lee, J. Single (Ni, Fe) Atoms and Ultrasmall Core@Shell Ni@Fe Nanostructures Dual-Implanted CNTs-Graphene Nanonetworks for Robust Zn- and Al-Air Batteries. Chem. Eng. J. 2022, 440, 135781. DOI: 10.1016/j.cej.2022.135781.
  • Choi, S.-G.; Hwan Kim, Y.; Lee, G. W.; Seok Choi, H.; Kim, K.-B. MOF-Derived Carbon/ZnS Nanoparticle Composite Interwoven with Structural and Conductive CNT Scaffolds for Ultradurable K-Ion Storage. Chem. Eng. J. 2023, 459, 141663. DOI: 10.1016/j.cej.2023.141663.
  • Tafete, G. A.; Thothadri, G.; Abera, M. K. A Review on Carbon Nanotube-Based Composites for Electrocatalyst Applications. Fuller. Nanotubes Carbon Nanostruct. 2022, 30, 1075–1083. DOI: 10.1080/1536383X.2022.2028278.
  • Yang, W. H.; Feng, Y.; Ke, C.; Wang, H.-H. The Synthesis of Fe@CNT-Fe/N/C Catalyst and Application for Oxygen Reduction Reaction on Fuel Cell. Fuller. Nanotubes Carbon Nanostruct. 2019, 27, 961–966. DOI: 10.1080/1536383X.2019.1678148.
  • Yang, Y. J. In-Situ Growth of Fe(III)/Tannic Acid/Polyvinyl Pyrrolidone Composite on Carbon Nanotubes for Enhanced Electroreduction of Oxygen. Fuller. Nanotubes Carbon Nanostruct. 2020, 29, 258–266. DOI: 10.1080/1536383X.2020.1835871.
  • Wang, M.; Yong, J.; Cai, L.; Li, Z.; Ou, Y.; Zhu, L.; Yi, X.; Mao, D. Significantly Improved Interfacial and Overall Mechanical Properties of Aramid Fiber/Phenolic Resin Matrix Composite Reinforced with Short CNT. J. Mater. Res. Technol. 2023, 26, 5225–5235. DOI: 10.1016/j.jmrt.2023.08.281.
  • Sun, J.; Song, Q.; Han, L.; Yin, X.; Li, H. Deep Understanding of Typical CNT Morphology on the Microstructure and Mechanical Properties of 2D Carbon/Carbon Composites. J. Materiomics 2023, DOI: 10.1016/j.jmat.2023.06.012.
  • Hou, Y.; Liao, C.; Qiu, S.; Xu, Z.; Mu, X.; Gui, Z.; Song, L.; Hu, Y.; Hu, W. Preparation of Soybean Root-like CNTs/Bimetallic Oxides Hybrid to Enhance Fire Safety and Mechanical Performance of Thermoplastic Polyurethane. Chem. Eng. J. 2021, 428, 132338. DOI: 10.1016/j.cej.2021.132338.
  • Zhang, S.; Sun, K.; Liu, H.; Chen, X.; Zheng, Y.; Shi, X. Z.; Zhang, D.; Mi, L.; Liu, C.; Shen, C. Enhanced Piezoresistive Performance of Conductive WPU/CNT Composite Foam through Incorporating Brittle Cellulose Nanocrystal. Chem. Eng. J. 2020, 387, 124045. DOI: 10.1016/j.cej.2020.124045.
  • Luo, J.; Wang, Y.; Qu, Z.; Wang, W.; Yu, D. Anisotropic, Multifunctional and Lightweight CNTs@CoFe2O4/Polyimide Aerogels for High Efficient Electromagnetic Wave Absorption and Thermal Insulation. Chem. Eng. J. 2022, 442, 136338. DOI: 10.1016/j.cej.2022.136388.
  • Hu, D.; Han, L.; Zhou, W.; Li, P.; Huang, Y.; Yang, Z.; Jia, X. Flexible Phase Change Composite Based on Loading Paraffin into Cross-Linked CNT/SBS Network for Thermal Management and Thermal Storage. Chem. Eng. J. 2022, 437, 135056. DOI: 10.1016/j.cej.2022.135056.
  • Chen, Z.; Meng, X.; Qian, C.; Zhou, J.; Li, Q.; Chen, X. Self-Heating Janus Separable CNT-PVA@CC/HPo-PVDF Membrane Coupling Photothermal and Electrothermal Effects for High-Oil Resistance, High-Efficiency and Stable Membrane Distillation. Chem. Eng. J. 2023, 474, 145857. DOI: 10.1016/j.cej.2023.145857.
  • Zhao, L.; Yang, Z.; Wang, J.; Zhou, Y.; Cao, P.; Zhang, J.; Yuan, P.; Zhang, Y.; Li, Q. Boosting Solar-Powered Interfacial Water Evaporation by Architecting 3d Interconnected Polymetric Network in Cnt Cellular Structure. SSRN J. 2022, 451, 138676. DOI: 10.2139/ssrn.4150346.
  • Wang, K.; Liu, X.; Zhao, Z.; Li, L.; Tong, J.; Shang, Q.; Liu, Y.; Zhang, Z. Carbon Nanotube Field-Effect Transistor Based pH Sensors. Carbon 2023, 205, 540–545. DOI: 10.1016/j.carbon.2023.01.049.
  • Liang, Y.; Yuan, F.; Xu, X.; Wang, X.; Hu, H.; Ou, J. Z. Bioinspired Polydopamine-Sheathed Carbon Nanotubes as Environmentally Safe, Efficient, and Durable Adsorbents for Organic Pollutant Capturing via Hydrogen Bonding. Carbon 2023, 214, 118354. DOI: 10.1016/j.carbon.2023.118354.
  • Manikandan, R.; Kim, J.; Ishigami, A.; Cho, J. Y.; Kim, J. H.; Han, J. T.; Lee, J.; Chang, S.-C. Dispersant-Free Supra Single-Walled Carbon Nanotubes for Simultaneous and Highly Sensitive Biomolecule Sensing in Ex Vivo Mouse Tissues. Carbon 2023, 213, 118275. DOI: 10.1016/j.carbon.2023.118275.
  • Ren, Q.; Zhang, Y.; Ma, S.; Wang, X.; Chang, K. C.; Zhang, Y.; Yin, F.; Li, Z.; Zhang, M. Low-Temperature Supercritical Activation Enables High-Performance Detection of Cell-Free DNA by All-Carbon-Nanotube Transistor. Carbon: Int. J. Spons. Am. Carbon Soc. 2022, (196,):120–127. DOI: 10.1016/j.carbon.2022.04.068.
  • Przewłoka, A.; Rehman, A.; Smirnov, S.; Karpierz-Marczewska, E.; Krajewska, A.; Liszewska, M.; Dróżdż, P. A.; Pavłov, K.; Dub, M.; Novytskyi, S.; et al. Conductivity Inversion of Methyl Viologen-Modified Random Networks of Single-Walled Carbon Nanotubes. Carbon 2022, 202, 214–220. DOI: 10.1016/j.carbon.2022.10.071.
  • Zhang, D.; Song, W.; Lv, L.; Gao, C.; Gao, F.; Guo, H.; Diao, R.; Dai, W.; Niu, J.; Chen, X.; et al. Mono-Dispersion Decorated Ultra-Long Single-Walled Carbon Nanotube/Aramid Nanofiber for High-Strength Electromagnetic Interference Shielding Film with Joule Heating Properties. Carbon 2023, 214, 118315. DOI: 10.1016/j.carbon.2023.118315.
  • Lee, G.; Choi, Y.; Ji, H. M.; Kim, J. Y.; Kim, J. P.; Kang, J.; Kwon, O. C.; Kim, D. W.; Park, J. H. Interwoven Carbon Nanotube-Poly(Acrylic Acid) Network Scaffolds for Stable Si Microparticle Battery Anode. Carbon 2022, 202, 12–19. DOI: 10.1016/j.carbon.2022.10.031.
  • Yuan, H.; Li, J.; Yuan, C.; He, Z. Facile Synthesis of MoS2@CNT as an Effective Catalyst for Hydrogen Production in Microbial Electrolysis Cells, F, 2014.
  • Wu, L.; Liu, X.; Wan, G.; Peng, X.; He, Z.; Shi, S.; Wang, G. Ni/CNTs and Carbon Coating Engineering to Synergistically Optimize the Interfacial Behaviors of TiO2 for Thermal Conductive Microwave Absorbers. Chem. Eng. J. 2022, 448, 137600. DOI: 10.1016/j.cej.2022.137600.
  • Yang, Y.; Liu, X.; Zhao, J.; Jia, X.; Li, Z.; Xiao, C.; Wang, J.; Li, Y.; Liang, J.; Ding, S.; Yu, W. Confined Dissipation Cage in Dual-Shell Structured Ti3C2Tx@CNTs/Ni Hollow Spheres for Lightweight and Broadband Electromagnetic Wave Absorption. Chem. Eng. J. 2023, 473, 145250. DOI: 10.1016/j.cej.2023.145250.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.