149
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Comparison study on carbon nanomaterial synthesis from methane and acetylene in DC arc plasma

, , &
Pages 471-482 | Received 27 Nov 2023, Accepted 07 Dec 2023, Published online: 27 Dec 2023

References

  • Razaq, A.; Bibi, F.; Zheng, X.; Papadakis, R.; Jafri, S. H. M.; Li, H. Review on Graphene-, Graphene Oxide-, Reduced Graphene Oxide-Based Flexible Composites: From Fabrication to Applications. Materials 2022, 15, 1012. DOI: 10.3390/ma15031012.
  • Hou, L.; Cui, X.; Guan, B.; Wang, S.; Li, R.; Liu, Y.; Zhu, D.; Zheng, J. Synthesis of a Monolayer Fullerene Network. Nature 2022, 606, 507–510. +. DOI: 10.1038/s41586-022-04771-5.
  • Huang, K. Y.; et al. Wireless Strain Sensing Using Carbon Nanotube Composite Film. Compos. Part B Eng. 2023, 256, 110650.
  • Fulcheri, L.; Rohani, V.-J.; Wyse, E.; Hardman, N.; Dames, E. An Energy-Efficient Plasma Methane Pyrolysis Process for High Yields of Carbon Black and Hydrogen. Int. J. Hydrogen Energy 2023, 48, 2920–2928. DOI: 10.1016/j.ijhydene.2022.10.144.
  • Fulcheri, L.; Schwob, Y.; Flamant, G. Comparison between New Carbon Nanostructures Produced by Plasma with Industrial Carbon Black Grades. J. Phys. III. France. 1997, 7, 491–503. DOI: 10.1051/jp3:1997137.
  • Fulcheri, L.; Schwob, Y.; Fabry, F.; Flamant, G.; Chibante, L. F. P.; Laplaze, D. Fullerene Production in a 3-Phase AC Plasma Process. Carbon 2000, 38, 797–803. DOI: 10.1016/S0008-6223(99)00153-0.
  • Fabry, F.; Flamant, G.; Fulcheri, L. Carbon Black Processing by Thermal Plasma. Analysis of the Particle Formation Mechanism. Chem. Eng. Sci. 2001, 56, 2123–2132. DOI: 10.1016/S0009-2509(00)00486-3.
  • Keun Su, K.; et al. Production of Hydrogen and Carbon Black by Methane Decomposition Using DC-RF Hybrid Thermal Plasmas. IEEE Trans. Plasma Sci. 2005, 33, 813–823.
  • Kim, K. S.; Cota-Sanchez, G.; Kingston, C. T.; Imris, M.; Simard, B.; Soucy, G. Large-Scale Production of Single-Walled Carbon Nanotubes by Induction Thermal Plasma. J. Phys. D Appl. Phys. 2007, 40, 2375–2387. DOI: 10.1088/0022-3727/40/8/S17.
  • Pristavita, R.; Mendoza-Gonzalez, N.-Y.; Meunier, J.-L.; Berk, D. Carbon Blacks Produced by Thermal Plasma: The Influence of the Reactor Geometry on the Product Morphology. Plasma Chem. Plasma Process. 2010, 30, 267–279. DOI: 10.1007/s11090-010-9218-7.
  • Wei-Dong, X.; et al. Preparation of Conductivity Carbon Black from Pyrogenation Tar in Plasma. J. Univ. Sci. Technol. China 2003, 33, 561–566.
  • Wang, C.; Sun, L.; Dai, X.; Li, D.; Chen, X.; Xia, W.; Xia, W. Continuous Synthesis of Graphene Nano-Flakes by Magnetically Rotating Arc at Atmospheric Pressure. Carbon 2019, 148, 394–402. DOI: 10.1016/j.carbon.2019.04.015.
  • Wang, C.; Sun, L.; Chen, X.; Song, M.; Xia, W. Products on Electrodes in an Argon-Methane Magnetically Rotating Arc at Atmospheric Pressure. Fuller. Nanotubes Carbon Nanostruct. 2019, 27, 498–505. DOI: 10.1080/1536383X.2019.1612378.
  • Hu, H.; Chen, X.; Wang, C.; Xia, W. Experimental Study of Graphene Synthesis by Different Gas-Doped Plasma. Fuller. Nanotubes Carbon Nanostruct. 2023, 1–11. DOI: 10.1080/1536383X.2023.2283140.
  • Li, D.; Wang, C.; Lu, Z.; Song, M.; Xia, W.; Xia, W. Synthesis of Graphene Flakes Using a Non-Thermal Plasma Based on Magnetically Stabilized Gliding Arc Discharge. Fuller. Nanotubes Carbon Nanostruct. 2020, 28, 846–856. DOI: 10.1080/1536383X.2020.1774559.
  • Cataldo, F.; Garcia-Hernandez, A. D.; Torres, A. M. Vinylacetylene Synthesis with a Low Power Submerged Carbon Arc in n-Hexane. Fuller. Nanotubes Carbon Nanostruct. 2021, 29, 956–965. DOI: 10.1080/1536383X.2021.1920580.
  • Antonova, I. V.; Shavelkina, M. B.; Ivanov, A. I.; Soots, R. A.; Ivanov, P. P.; Bocharov, A. N. Graphene Flakes for Electronic Applications: DC Plasma Jet-Assisted Synthesis. Nanomaterials 2020, 10, 2050. DOI: 10.3390/nano10102050.
  • Shashurin, A.; Keidar, M. Synthesis of 2D Materials in Arc Plasmas. J. Phys. D Appl. Phys. 2015, 48, 314007. DOI: 10.1088/0022-3727/48/31/314007.
  • Dato, A.; Frenklach, M. Substrate-Free Microwave Synthesis of Graphene: Experimental Conditions and Hydrocarbon Precursors. New J. Phys. 2010, 12, 125013. DOI: 10.1088/1367-2630/12/12/125013.
  • Amirov, R.; Shavelkina, M.; Alihanov, N.; Shkolnikov, E.; Tyuftyaev, A.; Vorob’eva, N. Direct Synthesis of Porous Multilayer Graphene Materials Using Thermal Plasma at Low Pressure. J. Nanomater. 2015, 2015, 1–6. DOI: 10.1155/2015/724508.
  • Tsyganov, D.; Bundaleska, N.; Tatarova, E.; Dias, A.; Henriques, J.; Rego, A.; Ferraria, A.; Abrashev, M. V.; Dias, F. M.; Luhrs, C. C.; et al. On the Plasma-Based Growth of ‘Flowing’ Graphene Sheets at Atmospheric Pressure Conditions. Plasma Sources Sci. Technol. 2015, 25, 015013. DOI: 10.1088/0963-0252/25/1/015013.
  • Onischuk, A. A.; di Stasio, S.; Karasev, V. V.; Baklanov, A. M.; Makhov, G. A.; Vlasenko, A. L.; Sadykova, A. R.; Shipovalov, A. V.; Panfilov, V. N. Evolution of Structure and Charge of Soot Aggregates during and after Formation in a Propane/Air Diffusion Flame. J. Aerosol Sci. 2003, 34, 383–403. DOI: 10.1016/S0021-8502(02)00215-X.
  • Morgan, N.; Kraft, M.; Balthasar, M.; Wong, D.; Frenklach, M.; Mitchell, P. Numerical Simulations of Soot Aggregation in Premixed Laminar Flames. Proc. Combust. Inst. 2007, 31, 693–700. DOI: 10.1016/j.proci.2006.08.021.
  • Tang, Q.; Ge, B.; Ni, Q.; Nie, B.; You, X. Soot Formation Characteristics of n-Heptane/Toluene Mixtures in Laminar Premixed Burner-Stabilized Stagnation Flames. Combust. Flame 2018, 187, 239–246. DOI: 10.1016/j.combustflame.2017.08.022.
  • Tang, Q.; Wang, M.; You, X. Effects of Fuel Structure on Structural Characteristics of Soot Aggregates. Combust. Flame 2019, 199, 301–308. DOI: 10.1016/j.combustflame.2018.10.033.
  • Alfè, M.; Apicella, B.; Barbella, R.; Rouzaud, J.-N.; Tregrossi, A.; Ciajolo, A. Structure–Property Relationship in Nanostructures of Young and Mature Soot in Premixed Flames. Proc. Combust. Inst. 2009, 32, 697–704. DOI: 10.1016/j.proci.2008.06.193.
  • Cataldo, F. Polyynes Formation from Electric Arc in Liquid Argon in Presence of Methane. Fuller. Nanotubes Carbon Nanostruct. 2007, 15, 291–301. DOI: 10.1080/15363830701423690.
  • Cheng, W. Evolution of Magnetically Rotating Arc into Large Area Arc Plasma. Chin. Phys. B 2015, 24, 065206.
  • Xia, W.; Li, L.; Zhao Y.; Ma, Q.; Du, B.; Chen, Q.; Cheng, L. Dynamics Of Large-Scale Magnetically Rotating Arc Plasmas. Appl. Phys. Lett. 2006, 88, 211501. DOI: 10.1063/1.2204839.
  • Ma, J.; Zhang, M.; Wu, J.; Yang, Q.; Wen, G.; Su, B.; Ren, Q. Hydropyrolysis of n-Hexane and Toluene to Acetylene in Rotating-Arc Plasma. Energies 2017, 10, 899. DOI: 10.3390/en10070899.
  • Slovetskii, D. I. Mathematical Modeling of the Plasma-Chemical Pyrolysis of Methane. High Energy Chem. 2002, 36, 44–52.
  • Frenklach, M. Reaction Mechanism of Soot Formation in Flames. Phys. Chem. Chem. Phys. 2002, 4, 2028–2037. DOI: 10.1039/b110045a.
  • Saggese, C.; Sánchez, N. E.; Frassoldati, A.; Cuoci, A.; Faravelli, T.; Alzueta, M. U.; Ranzi, E. Kinetic Modeling Study of Polycyclic Aromatic Hydrocarbons and Soot Formation in Acetylene Pyrolysis. Energy Fuels 2014, 28, 1489–1501. DOI: 10.1021/ef402048q.
  • Appel, J.; Bockhorn, H.; Frenklach, M. Kinetic Modeling of Soot Formation with Detailed Chemistry and Physics: Laminar Premixed Flames of C2 Hydrocarbons. Combust. Flame 2000, 121, 122–136. DOI: 10.1016/S0010-2180(99)00135-2.
  • Zhang, L.; Cai, J.; Zhang, T.; Qi, F. Kinetic Modeling Study of Toluene Pyrolysis at Low Pressure. Combust. Flame 2010, 157, 1686–1697. DOI: 10.1016/j.combustflame.2010.04.002.
  • Yuan, W.; Li, Y.; Dagaut, P.; Yang, J.; Qi, F. Investigation on the Pyrolysis and Oxidation of Toluene over a Wide Range Conditions. II. A Compreh. Kinetic Model. Study 2015, 162, 22–40. DOI: 10.1016/j.combustflame.2014.07.011.
  • Yuan, W.; Li, Y.; Pengloan, G.; Togbé, C.; Dagaut, P.; Qi, F. A Comprehensive Experimental and Kinetic Modeling Study of Ethylbenzene Combustion. Combust. Flame 2016, 166, 255–265. DOI: 10.1016/j.combustflame.2016.01.026.
  • Dworkin, S. B.; Zhang, Q.; Thomson, M. J.; Slavinskaya, N. A.; Riedel, U. Application of an Enhanced PAH Growth Model to Soot Formation in a Laminar Coflow Ethylene/Air Diffusion Flame. Combust. Flame 2011, 158, 1682–1695. DOI: 10.1016/j.combustflame.2011.01.013.
  • Singh, M.; Sengupta, A.; Zeller, K.; Skoptsov, G.; Vander Wal, R. L. Effect of Hydrogen Concentration on Graphene Synthesis Using Microwave-Driven Plasma-Mediated Methane Cracking. Carbon 2019, 143, 802–813. DOI: 10.1016/j.carbon.2018.11.082.
  • Kim, K. S.; Hong, S. H.; Lee, K.-S.; Ju, W. T. Continuous Synthesis of Nanostructured Sheetlike Carbons by Thermal Plasma Decomposition of Methane. IEEE Trans. Plasma Sci. 2007, 35, 434–443. DOI: 10.1109/TPS.2007.892556.
  • Chen, X.; Wang, C.; Song, M.; Ma, J.; Ye, T.; Xia, W. The Morphological Transformation of Carbon Materials from Nanospheres to Graphene Nanoflakes by Thermal Plasmas. Carbon 2019, 155, 521–530. DOI: 10.1016/j.carbon.2019.08.077.
  • Chandler, M. F.; Teng, Y.; Koylu, U. O. Diesel Engine Particulate Emissions: A Comparison of Mobility and Microscopy Size Measurements. Proc. Combust. Inst. 2007, 31, 2971–2979. DOI: 10.1016/j.proci.2006.07.200.
  • Neer, A.; Koylu, U. O. Effect of Operating Conditions on the Size, Morphology, and Concentration of Submicrometer Particulates Emitted from a Diesel Engine. Combust. Flame 2006, 146, 142–154. DOI: 10.1016/j.combustflame.2006.04.003.
  • Zhu, J.; Lee, K. O.; Yozgatligil, A.; Choi, M. Y. Effects of Engine Operating Conditions on Morphology, Microstructure, and Fractal Geometry of Light-Duty Diesel Engine Particulates. Proc. Combust. Inst. 2005, 30, 2781–2789. DOI: 10.1016/j.proci.2004.08.232.
  • Vander Wal, R. L.; Choi, M. Y. Pulsed Laser Heating of Soot: Morphological Changes. Carbon 1999, 37, 231–239. DOI: 10.1016/S0008-6223(98)00169-9.
  • Kholghy, M. R.; Veshkini, A.; Thomson, M. J. J. C. The Core–Shell Internal Nanostructure of Soot–a Criterion to Model Soot Maturity. Carbon 2016, 100, 508–536. DOI: 10.1016/j.carbon.2016.01.022.
  • Cain, J.; Laskin, A.; Kholghy, M. R.; Thomson, M. J.; Wang, H. Molecular Characterization of Organic Content of Soot along the Centerline of a Coflow Diffusion Flame. Phys. Chem. Chem. Phys. 2014, 16, 25862–25875. DOI: 10.1039/c4cp03330b.
  • Singh, R.; Frenklach, M. A Mechanistic Study of the Influence of Graphene Curvature on the Rate of High-Temperature Oxidation by Molecular Oxygen. Carbon 2016, 101, 203–212. DOI: 10.1016/j.carbon.2016.01.090.
  • Cao, B.; Liu, H.; Xu, B.; Lei, Y.; Chen, X.; Song, H. Mesoporous Soft Carbon as an Anode Material for Sodium Ion Batteries with Superior Rate and Cycling Performance. J. Mater. Chem. A 2016, 4, 6472–6478. DOI: 10.1039/C6TA00950F.
  • Manoj, B.; Kunjomana, A. Study of Stacking Structure of Amorphous Carbon by X-Ray Diffraction Technique. Int. J. Electrochem. Sci. 2012, 7, 3127–3134. DOI: 10.1016/S1452-3981(23)13940-X.
  • D’Alessio, A.; Barone, A. C.; Cau, R.; D’Anna, A.; Minutolo, P. Surface Deposition and Coagulation Efficiency of Combustion Generated Nanoparticles in the Size Range from 1 to 10nm. Proc. Combust. Inst. 2005, 30, 2595–2603. DOI: 10.1016/j.proci.2004.08.267.
  • Saggese, C.; Ferrario, S.; Camacho, J.; Cuoci, A.; Frassoldati, A.; Ranzi, E.; Wang, H.; Faravelli, T. Kinetic Modeling of Particle Size Distribution of Soot in a Premixed Burner-Stabilized Stagnation Ethylene Flame. Combust. Flame 2015, 162, 3356–3369. DOI: 10.1016/j.combustflame.2015.06.002.
  • Stirn, R.; Baquet, T. G.; Kanjarkar, S.; Meier, W.; Geigle, K. P.; Grotheer, H. H.; Wahl, C.; Aigner, M. Comparison of Particle Size Measurements with Laser-Induced Incandescence, Mass Spectroscopy, and Scanning Mobility Particle Sizing in a Laminar Premixed Ethylene/Air Flame. Combust. Sci. Technol. 2009, 181, 329–349. DOI: 10.1080/00102200802483498.
  • Hurt, R. H.; Crawford, G. P.; Shim, H.-S. Equilibrium Nanostructure of Primary Soot Particles. Proc. Combust. Inst. 2000, 28, 2539–2546. DOI: 10.1016/S0082-0784(00)80670-0.
  • Zhang, H.; Cao, T.; Cheng, Y. Preparation of Few-Layer Graphene Nanosheets by Radio-Frequency Induction Thermal Plasma. Carbon 2015, 86, 38–45. DOI: 10.1016/j.carbon.2015.01.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.