321
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Antioxidative activity of alcohol-soluble fullerene derivative

&
Pages 505-508 | Received 20 Nov 2023, Accepted 14 Dec 2023, Published online: 26 Dec 2023

References

  • (a) Choe, E.; Min, D. B. Mechanisms of Antioxidants in the Oxidation of Foods. Comp. Rev. Food Sci. Food Safe 2009, 8, 345–358. DOI: 10.1111/j.1541-4337.2009.00085.x.; (b) Cataldo, F. Interaction of C60 Fullerene with Lipids. Chem. Phys. Lipids 2010, 163, 524–529.; (c) Cataldo, F.; Rocchi, S.; Ursini, O. Antioxidant Effect of C 60 and C 70 Fullerene in the Autoxidation of Ethyl Oleate. Fuller. Nanotub. Carbon Nanostructures 2013, 21, 624–633.; (d) Sabirov, D. S. H.; Garipova, R. R.; Bulgakov, R. G. What Fullerene is More Reactive toward Peroxyl Radicals? A Comparative DFT Study on ROO • Addition to C 60 and C 70 Fullerenes. Fuller. Nanotub. Carbon Nanostructures 2015, 23, 1051–1057.; (e) Czochara, R.; Kusio, J.; Symonowicz, M.; Litwinienko, G. Fullerene C 60 Derivatives as High-Temperature Inhibitors of Oxidative Degradation of Saturated Hydrocarbons. Ind. Eng. Chem. Res. 2016, 55, 9887–9894.; (f) Galimov, D. I.; Gazeeva, D. R.; Sabirov, D. S.; Bulgakov, R. G. Estimation of the Efficiency of the C 60 and C 70 Fullerenes as Inhibitors of the Radical Chain Oxidation of Сumene. Fuller. Nanotub. Carbon Nanostructures 2023, 31, 176–181.
  • Xiao, L.; Takada, H.; Gan, X. H.; Miwa, N. The Water-Soluble Fullerene Derivative “Radical Sponge” Exerts Cytoprotective Action against UVA Irradiation but Not Visible-Light-Catalyzed Cytotoxicity in Human Skin Keratinocytes. Bioorg. Med. Chem. Lett. 2006, 16, 1590–1595. DOI: 10.1016/j.bmcl.2005.12.011.
  • Yao, Z.; Tam, K. C. Stimuli-Responsive Water-Soluble Fullerene (C60) Polymeric Systems. Macromol. Rapid Commun. 2011, 32, 1863–1885. DOI: 10.1002/marc.201100426. 21997830
  • (a) Nierengarten, J.-F. Copper-Catalyzed Alkyne-Azide Cycloaddition for the Functionalization of Fullerene Building Blocks. Pure Appl. Chem. 2011, 84, 1027–1037. DOI: 10.1351/PAC-CON-11-08-21.; (b) Ho, K.-H. L.; Hijazi, I.; Rivier, L.; Gautier, C.; Jousselme, B.; de Miguel, G.; Romero-Nieto, C.; Guldi, D. M.; Heinrich, B.; Donnio, B.; Campidelli, S. Host–Guest Complexation of [60]Fullerenes and Porphyrins Enabled by “Click Chemistry”. Chem. A Eur. J. 2013, 19, 11374–11381.; (c) Ko, Y.-G.; Hahm, S. G.; Murata, K.; Kim, Y. Y.; Ree, B. J.; Song, S.; Michinobu, T.; Ree, M. New Fullerene-Based Polymers and Their Electrical Memory Characteristics. Macromolecules 2014, 47, 8154–8163.; (d) Constant, C.; Albert, S.; Zivic, N.; Baczko, K.; Fensterbank, H.; Allard, E. Orthogonal Functionalization of a Fullerene Building Block through Copper-Catalyzed Alkyne–Azide and Thiol–Maleimide Click Reactions. Tetrahedron 2014, 70, 3023–3029.; (e) Jevric, M.; Petersen, A. U.; Mansø, M.; Madsen, A. Ø.; Nielsen, M. B. Bismuth(III)‐Promoted Acetylation of Thio­Ethers into Thioacetates. Eur. J. Org. Chem. 2015, 2015, 4675–4688.; (f) Fensterbank, H.; Baczko, K.; Constant, C.; Idttalbe, N.; Bourdreux, F.; Vallée, A.; Goncalves, A.-M.; Méallet-Renault, R.; Clavier, G.; Wright, K.; Allard, E. Sequential Copper-Catalyzed Alkyne–Azide Cycloaddition and Thiol-Maleimide Addition for the Synthesis of Photo- and/or Electroactive Fullerodendrimers and Cysteine-Functionalized Fullerene Derivatives. J. Org. Chem. 2016, 81, 8222–8233.; (g) Hahn, U.; Nierengarten, J.-F. The Copper–Catalyzed Alkyne-Azide Cycloaddition for the Construction of Fullerene–Porphyrin Conjugates. J. Porphyrins Phthalocyanines 2016, 20, 918–934.; (h) Muñoz, A.; Illescas, B. M.; Luczkowiak, J.; Lasala, F.; Ribeiro-Viana, R.; Rojo, J.; Delgado, R.; Martín, N. Antiviral Activity of Self-Assembled Glycodendro[60]Fullerene Monoadducts. J. Mater. Chem. B 2017, 5, 6566–6571.; (i) Salta, J.; Arp, F. F.; Kühne, C.; Reissig, H.-U. Multivalent 1,2,3‐Triazole‐Linked Carbohydrate Mimetics by Huisgen–Meldal‐Sharpless Cycloadditions of an Azidopyran. Eur. J. Org. Chem. 2020, 2020, 7333–7342.; (j) Rabah, J.; Yonkeu, L.; Wright, K.; Vallée, A.; Méallet-Renault, R.; Ha-Thi, M.-H.; Fatima, A.; Clavier, G.; Fensterbank, H.; Allard, E. Synthesis of a Dual Clickable Fullerene Platform and Construction of a Dissymmetric BODIPY-[60]Fullerene-DistyrylBODIPY Triad. Tetrahedron 2021, 100, 132467.
  • Iehl, J.; Nierengarten, J.-F. A Click-Click Approach for the Preparation of Functionalized [5:1]-Hexaadducts of C60. Chemistry 2009, 15, 7306–7309. DOI: 10.1002/chem.200901291.
  • (a) Tsuchihashi, H.; Kigoshi, M.; Iwatsuki, M.; Niki, E. Action of Beta-Carotene as an Antioxidant against Lipid Peroxidation. Arch. Biochem. Biophys. 1995, 323, 137–147. DOI: 10.1006/abbi.1995.0019.[PMC]; (b) Farhoosh, R. Antioxidant Activity and Mechanism of Action of Butein in Linoleic Acid. Food Chem. 2005, 93, 633–639.
  • Horie, M.; Fukuhara, A.; Saito, Y.; Yoshida, Y.; Sato, H.; Ohi, H.; Obata, M.; Mikata, Y.; Yano, S.; Niki, E. Antioxidant Action of Sugar-Pendant C60 Fullerenes. Bioorg. Med. Chem. Lett. 2009, 19, 5902–5904. DOI: 10.1016/j.bmcl.2009.08.067.
  • Kato, S.; Aoshima, H.; Saitoh, Y.; Miwa, H. Highly Hydroxylated or γ-Cyclodextrin-Bicapped Water-Soluble Derivative of Fullerene: The Antioxidant Ability Assessed by Electron Spin Resonance Method and β-Carotene Bleaching Assay. Bioorg. Med. Chem. Lett. 2009, 19, 5293–5296. DOI: 10.1016/j.bmcl.2009.07.149.