95
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Impact of spheroidal graphite morphology on the functionalization of graphene oxide surface

, , , , &
Pages 640-650 | Received 15 Jan 2024, Accepted 30 Jan 2024, Published online: 12 Mar 2024

References

  • Ucar, N.; Can, E.; Yuksek, İO.; Olmez, M.; Onen, A.; Yavuz, N. K. The Effect of Exfoliation and Plasma Application on the Properties of Continuous Graphene Oxide Fiber. Fullerenes Nanotubes Carbon Nanostruct. 2017, 25, 570–575. DOI: 10.1080/1536383X.2017.1337749.
  • Macclesh del Pino Pérez, L. A.; Cepeda, A. B. M.; García Alamilla, R.; Lozano Ramírez, T. Modification of Graphene Oxide with Titanium Dioxide by Alcoholic Reduction. Fullerenes Nanotubes Carbon Nanostruct. 2018, 26, 545–550. DOI: 10.1080/1536383X.2018.1457025.
  • Jahromi, M. P.; Moradi, S. E.; Nasrollahpour, A.; Moradi, S. M. J. FePt/Reduced Graphene Oxide Composites for High Capacity Hydrogen Storage. Fullerenes, Nanotubes Carbon Nanostruct. 2017, 25, 295–300. DOI: 10.1080/1536383X.2017.1287699.
  • Zhu, X.; Zhao, N.; Luo, Y.; Du, J. Influence of Graphene Oxide with Different Degrees of Oxidation on the Conductivity of Graphene/Poly(3,4-Ethylenedioxythiophene)/Poly(Styrenesulfonate) Composites. Fullerenes Nanotubes Carbon Nanostruct. 2017, 25, 652–660. DOI: 10.1080/1536383X.2017.1378644.
  • Komarov, I. A.; Antipova, O. M.; Kalinnikov, A. N.; Orlov, M. A.; Bogachev, V. V.; Buyanov, A. D.; Onoprienko, E. A. Coupling of Short DNAs with Reduced Graphene Oxide for Electronic and Sensing Applications. Fullerenes Nanotubes Carbon Nanostruct. 2020, 28, 526–532. DOI: 10.1080/1536383X.2020.1713761.
  • Del Gaudio, C. A Feasibility Study for a Straightforward Decoration of a 3D Printing Filament with Graphene Oxide. Fullerenes Nanotubes Carbon Nanostruct. 2019, 27, 607–612. DOI: 10.1080/1536383X.2019.1619174.
  • Lu, T.; Al-Hamry, A.; Rosolen, J. M.; Hu, Z.; Hao, J.; Wang, Y.; Adiraju, A.; Yu, T.; Matsubara, E. Y.; Kanoun, O. Flexible Impedimetric Electronic Nose for High-Accurate Determination of Individual Volatile Organic Compounds by Tuning the Graphene Sensitive Properties. Chemosensors 2021, 9, 360. DOI: 10.3390/chemosensors9120360.
  • Gonçales, V. R.; Colombo, R. N. P.; Minadeo, M. A. O. S.; Matsubara, E. Y.; Rosolen, J. M.; Córdoba de Torresi, S. I. Three-Dimensional Graphene/Carbon Nanotubes Hybrid Composites for Exploring Interaction between Glucose Oxidase and Carbon Based Electrodes. Electroanal. Chem. 2016, 775, 235–242. DOI: 10.1016/j.jelechem.2016.06.002.
  • Ajala, O. J.; Tijani, J. O.; Bankole, M. T.; Abdulkareem, A. S. A Critical Review on Graphene Oxide Nanostructured Material: Properties, Synthesis, Characterization and Application in Water and Wastewater Treatment. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100673. DOI: 10.1016/j.enmm.2022.100673.
  • Xian, H. Y.; Peng, T. J.; Sun, H. J. Effect of Particle Size of Natural Flake Graphite on the Size and Structure of Graphene Oxide Prepared by the Modified Hummers Method. MSF 2015, 814, 185–190. DOI: 10.4028/www.scientific.net/MSF.814.185.
  • Lavin-Lopez, M. P.; Patón-Carrero, A.; Muñoz-Garcia, N.; Enguilo, V.; Valverde, J. L.; Romero, A. The Influence of Graphite Particle Size on the Synthesis of Graphene-Based Materials and Their Adsorption Capacity. Colloids Surf. A Physicochem. Eng. Asp 2019, 582, 123935. DOI: 10.1016/j.colsurfa.2019.123935.
  • Rhazouani, A.; Gamrani, H.; El Achaby, M.; Aziz, K.; Gebrati, L.; Uddin, M. S.; Aziz, F. Synthesis and Toxicity of Graphene Oxide Nanoparticles: A Literature Review of in Vitro and in Vivo Studies. Biomed. Res. Int. 2021, 2021, 5518999–5518919. DOI: 10.1155/2021/5518999.
  • Andrijanto, E.; Shoelarta, S.; Subiyanto, G.; Rifki, S. Facile Synthesis of Graphene from Graphite Using Ascorbic Acid as Reducing Agent. AIP Conf. Proc. 2016, 1725, 020003. DOI: 10.1063/1.4945457.
  • Ambrosi, A.; Chua, C. K.; Bonanni, A.; Pumera, M. Electrochemistry of Graphene and Related Materials. Chem. Rev. 2014, 114, 7150–7188. DOI: 10.1021/cr500023c.
  • Kim, J. H.; Shim, G. H.; Vo, T. T. N.; Kweon, B.; Kim, K. M.; Ahn, H. S. Building with Graphene Oxide: Effect of Graphite Nature and Oxidation Methods on the Graphene Assembly. RSC Adv. 2021, 11, 3645–3654. DOI: 10.1039/d0ra10207e.
  • Rao, K. S.; Senthilnathan, J.; Liu, Y.-F.; Yoshimura, M. Role of Peroxide Ions in Formation of Graphene Nanosheets by Electrochemical Exfoliation of Graphite. Sci. Rep. 2014, 4, 4237. DOI: 10.1038/srep04237.
  • Sofer, Z.; Luxa, J.; Jankovský, O.; Sedmidubský, D.; Bystroň, T.; Pumera, M. Synthesis of Graphene Oxide by Oxidation of Graphite with Ferrate(VI) Compounds: Myth or Reality? Angew. Chem. 2016, 128, 12144–12148. DOI: 10.1002/ange.201603496.
  • Pacilé, D.; Meyer, J. C.; Fraile Rodríguez, A.; Papagno, M.; Gómez-Navarro, C.; Sundaram, R. S.; Burghard, M.; Kern, K.; Carbone, C.; Kaiser, U. Electronic Properties and Atomic Structure of Graphene Oxide Membranes. Carbon N Y 2011, 49, 966–972. DOI: 10.1016/j.carbon.2010.09.063.
  • Saxena, S.; Tyson, T. A.; Shukla, S.; Negusse, E.; Chen, H.; Bai, J. Investigation of Structural and Electronic Properties of Graphene Oxide. Appl. Phys. Lett. 2011, 99, 013104. DOI: 10.1063/1.3607305.
  • Mkhoyan, K. A.; Contryman, A. W.; Silcox, J.; Stewart, D. A.; Eda, G.; Mattevi, C.; Miller, S.; Chhowalla, M. Atomic and Electronic Structure of Graphene-Oxide. Nano Lett. 2009, 9, 1058–1063. DOI: 10.1021/nl8034256.
  • Fok, T.; Janulewicz, K. A.; Wachulak, P.; Bartnik, A.; Nasiłowska, B.; Kostecki, J.; Budner, B.; Fiedorowicz, H.; Djas, M.; Kuźmiuk, P.; et al. Electronic Structure of Multi-Layered Graphene Oxide Membrane Moderately Reduced in Vacuum. J. Phys. Chem. Solids 2022, 164, 110623. DOI: 10.1016/j.jpcs.2022.110623.
  • Ferrari, I.; Motta, A.; Zanoni, R.; Scaramuzzo, F. A.; Amato, F.; Dalchiele, E. A.; Marrani, A. G. Understanding the Nature of Graphene Oxide Functional Groups by Modulation of the Electrochemical Reduction: A Combined Experimental and Theoretical Approach. Carbon N Y 2023, 203, 29–38. DOI: 10.1016/j.carbon.2022.11.052.
  • Rani, J. R.; Lim, J.; Oh, J.; Kim, J. W.; Shin, H. S.; Kim, J. H.; Lee, S.; Jun, S. C. Epoxy to Carbonyl Group Conversion in Graphene Oxide Thin Films: Effect on Structural and Luminescent Characteristics. J. Phys. Chem. C 2012, 116, 19010–19017. DOI: 10.1021/jp3050302.
  • Majumder, P.; Gangopadhyay, R. Evolution of Graphene Oxide (GO)-Based Nanohybrid Materials with Diverse Compositions: An Overview. RSC Adv. 2022, 12, 5686–5719. DOI: 10.1039/D1RA06731A.
  • Yin, C.; Du, X.; Ding, Z.; Zeng, Q.; Li, X.; He, C.; Xiong, B.; Li, J.; Zhou, Y. Gas Permeation and Microstructure of Reduced Graphene Oxide/Polyethyleneimine Multilayer Films Created via Recast and Layer-by-Layer Deposition Processes. RSC Adv. 2022, 12, 6561–6572. DOI: 10.1039/d1ra09205g.
  • Razaq, A.; Bibi, F.; Zheng, X.; Papadakis, R.; Jafri, S. H. M.; Li, H. Review on Graphene-, Graphene Oxide-, Reduced Graphene Oxide-Based Flexible Composites: From Fabrication to Applications. Materials (Basel) 2022, 15, 1012. DOI: 10.3390/ma15031012.
  • Yadav, S.; Singh Raman, A. P.; Meena, H.; Goswami, A. G.; Kumar, V.; Jain, P.; Kumar, G.; Sagar, M.; Rana, D. K.; Bahadur, I.; et al. An Update on Graphene Oxide: Applications and Toxicity. ACS Omega, 2022, 7 (40), 35387–35445. DOI: 10.1021/acsomega.2c03171.
  • Benzait, Z.; Trabzon, L. Graphite Size Effect on Chemical Expansion and Graphene Oxide Properties. ACS Omega 2022, 7, 37885–37895. DOI: 10.1021/acsomega.2c05059.
  • Li, L.; Zhang, D.; Deng, J.; Kang, Q.; Liu, Z.; Fang, J.; Gou, Y. Review—Progress of Research on the Preparation of Graphene Oxide via Electrochemical Approaches. J. Electrochem. Soc. 2020, 167, 155519. DOI: 10.1149/1945-7111/abbbc0.
  • Kornilov, D. Y.; Gubin, S. P. Graphene Oxide: Structure, Properties, Synthesis, and Reduction (a Review). Russ. J. Inorg. Chem. 2020, 65, 1965–1976. DOI: 10.1134/S0036023620130021.
  • Fischer, S.; Doose, S.; Müller, J.; Höfels, C.; Kwade, A. Impact of Spheroidization of Natural Graphite on Fast-Charging Capability of Anodes for LIB. Batteries 2023, 9, 305. DOI: 10.3390/batteries9060305.
  • Chen, X.; Qu, Z.; Liu, Z.; Ren, G. Mechanism of Oxidization of Graphite to Graphene Oxide by the Hummers Method. ACS Omega 2022, 7, 23503–23510. DOI: 10.1021/acsomega.2c01963.
  • Silva, W. R.; Matsubara, E. Y.; Rosolen, J. M.; Donate, P. M.; Gunnella, R. Pd Catalysts Supported on Different Hydrophilic or Hydrophobic Carbonaceous Substrate for Furfural and 5-(Hydroxymethyl)-Furfural Hydrogenation in Water. Mol. Catal. 2021, 504, 111496. DOI: 10.1016/j.mcat.2021.111496.
  • Wojdyr, M. Fityk: A General-Purpose Peak Fitting Program. J. Appl. Crystallogr. 2010, 43, 1126–1128. DOI: 10.1107/S0021889810030499.
  • Shirley, D. A. High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold. Phys. Rev. B 1972, 5, 4709–4714. DOI: 10.1103/PhysRevB.5.4709.
  • Patiño-Carachure, C.; Martínez-Vargas, S.; Flores-Chan, J. E.; Rosas, G. Synthesis of Carbon Nanostructures by Graphite Deformation during Mechanical Milling in Air. Fullerenes Nanotubes Carbon Nanostruct. 2020, 28, 869–876. DOI: 10.1080/1536383X.2020.1776264.
  • Seri-Livni, O.; Saguy, C.; Horani, F.; Lifshitz, E.; Cheskis, D. Effective Reduction of Oxygen Debris in Graphene Oxide. Phys. Status Solidi B 2021, 258, 2000505. DOI: 10.1002/pssb.202000505.
  • Lai, Q.; Zhu, S.; Luo, X.; Zou, M.; Huang, S. Ultraviolet-Visible Spectroscopy of Graphene Oxides. AIP Adv. 2012, 2, 032146. DOI: 10.1063/1.4747817.
  • Gacka, E.; Majchrzycki, Ł.; Marciniak, B.; Lewandowska-Andralojc, A. Effect of Graphene Oxide Flakes Size and Number of Layers on Photocatalytic Hydrogen Production. Sci. Rep. 2021, 11, 15969. DOI: 10.1038/s41598-021-95464-y.
  • Ganguly, A.; Sharma, S.; Papakonstantinou, P.; Hamilton, J. Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution in Situ X-Ray-Based Spectroscopies. J. Phys. Chem. C 2011, 115, 17009–17019. DOI: 10.1021/jp203741y.
  • Li, S.; Vahdat, M. T.; Huang, S.; Hsu, K.-J.; Rezaei, M.; Mensi, M.; Marzari, N.; Agrawal, K. V. Structure Evolution of Graphitic Surface upon Oxidation: Insights by Scanning Tunneling Microscopy. JACS Au 2022, 2, 723–730. DOI: 10.1021/jacsau.1c00570.
  • Mezzi, A.; Kaciulis, S. Surface Investigation of Carbon Films: From Diamond to Graphite. Surf. Interface Anal. 2010, 42, 1082–1084. DOI: 10.1002/sia.3348.
  • Boehm, H. P. Surface Oxides on Carbon and Their Analysis: A Critical Assessment. Carbon N Y 2002, 40, 145–149. DOI: 10.1016/S0008-6223(01)00165-8.
  • Chen, X.; Wang, X.; Fang, D. A Review on C1s XPS-Spectra for Some Kinds of Carbon Materials. Fullerenes Nanotubes Carbon Nanostruct. 2020, 28, 1048–1058. DOI: 10.1080/1536383X.2020.1794851.
  • Stobinski, L.; Lesiak, B.; Malolepszy, A.; Mazurkiewicz, M.; Mierzwa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I. Graphene Oxide and Reduced Graphene Oxide Studied by the XRD, TEM and Electron Spectroscopy Methods. J. Electron Spectros. Relat. Phenomena 2014, 195, 145–154. DOI: 10.1016/j.elspec.2014.07.003.
  • Wang, Y.; He, Q.; Qu, H.; Zhang, X.; Guo, J.; Zhu, J.; Zhao, G.; Colorado, H. A.; Yu, J.; Sun, L.; et al. Magnetic Graphene Oxide Nanocomposites: Nanoparticles Growth Mechanism and Property Analysis. J. Mater. Chem. C Mater. 2014, 2, 9478–9488. DOI: 10.1039/C4TC01351D.
  • Acik, M.; Lee, G.; Mattevi, C.; Chhowalla, M.; Cho, K.; Chabal, Y. J. Unusual Infrared-Absorption Mechanism in Thermally Reduced Graphene Oxide. Nat. Mater. 2010, 9, 840–845. DOI: 10.1038/nmat2858.
  • Lee, A. Y.; Yang, K.; Anh, N. D.; Park, C.; Lee, S. M.; Lee, T. G.; Jeong, M. S. Raman Study of D* Band in Graphene Oxide and Its Correlation with Reduction. Appl. Surf. Sci. 2021, 536, 147990. DOI: 10.1016/j.apsusc.2020.147990.
  • López-Dı Az, D.; Merchán, M. D.; Velázquez, M. M.; Maestro, A. Understanding the Role of Oxidative Debris on the Structure of Graphene Oxide Films at the Air–Water Interface: A Neutron Reflectivity Study. ACS Appl. Mater. Interfaces 2020, 12, 25453–25463. DOI: 10.1021/acsami.0c05649.
  • Chen, C.; Jia, L.; Li, J.; Zhang, L.; Liang, L.; Chen, E.; Kong, Z.; Wang, X.; Zhang, W.; Shen, J.-W. Understanding the Effect of Hydroxyl/Epoxy Group on Water Desalination through Lamellar Graphene Oxide Membranes via Molecular Dynamics Simulation. Desalination 2020, 491, 114560. DOI: 10.1016/j.desal.2020.114560.
  • Lv, H.; Yao, Y.; Li, S.; Wu, G.; Zhao, B.; Zhou, X.; Dupont, R. L.; Kara, U. I.; Zhou, Y.; Xi, S.; et al. Staggered Circular Nanoporous Graphene Converts Electromagnetic Waves into Electricity. Nat. Commun. 2023, 14, 1982. DOI: 10.1038/s41467-023-37436-6.
  • Sinclair, R. C.; Coveney, P. V. Modeling Nanostructure in Graphene Oxide: Inhomogeneity and the Percolation Threshold. J. Chem. Inf. Model 2019, 59, 2741–2745. DOI: 10.1021/acs.jcim.9b00114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.