52
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and characterization of ternary nanocomposite based on Ag-Fe3O4/rGO for electrochemical application

ORCID Icon, ORCID Icon & ORCID Icon
Pages 651-663 | Received 14 Dec 2023, Accepted 31 Jan 2024, Published online: 15 Feb 2024

References

  • Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M. D.; Wagner, N.; Gorini, R. The Role of Renewable Energy in the Global Energy Transformation. Energy Strateg. Rev. 2019, 24, 38–50. DOI: 10.1016/j.esr.2019.01.006.
  • Singh, J.; Dhaliwal, A. S.; Sharma, K.; Sehgal, R.; Kumar, V. Conductive Polymer-Based Composite Photocatalysts for Environment and Energy Applications. Conjug. Polym. Next-Generation Appl. Vol. 1 Synth. Prop. Optoelectrochem. Dev. 2022, 505–538. DOI: 10.1016/B978-0-12-823442-6.00011-8.
  • Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. Graphene: The New Two-Dimensional Nanomaterial. Angew. Chem. Int. Ed. Engl. 2009, 48, 7752–7777. DOI: 10.1002/ANIE.200901678.
  • Singh, J.; Dhaliwal, A. S. Electrochemical and Photocatalytic Degradation of Methylene Blue by Using RGO/AgNWs Nanocomposite Synthesized by Electroplating on Stainless Steel. J. Phys. Chem. Solids 2022, 160, 110358. DOI: 10.1016/j.jpcs.2021.110358.
  • Yadav, S.; Devi, A. Recent Advancements of Metal Oxides/Nitrogen-Doped Graphene Nanocomposites for Supercapacitor Electrode Materials. J. Energy Storage 2020, 30, 101486. DOI: 10.1016/j.est.2020.101486.
  • Theyagarajan, K.; Thenmozhi, K.; Senthilkumar, S. Metal Oxide-Graphene Nanocomposite Modified Electrochemical Sensors for Toxic Chemicals. Met. Oxides Nanocomposite-Based Electrochem. Sensors Toxic Chem. 2021, 139–171. DOI: 10.1016/B978-0-12-820727-7.00007-0.
  • Upadhyay, R. K.; Soin, N.; Roy, S. S. Role of Graphene/Metal Oxide Composites as Photocatalysts, Adsorbents and Disinfectants in Water Treatment: A Review. RSC Adv. 2014, 4, 3823–3851. DOI: 10.1039/C3RA45013A.
  • Fatima, K.; Pandith, A. H.; Manzoor, T.; Qureashi, A. DFT Studies on a Metal Oxide@Graphene-Decorated D − π1-Π2-a Novel Multi-Junction Light-Harvesting System for Efficient Dye-Sensitized Solar Cell Applications. ACS Omega 2023, 8, 8865–8875. DOI: 10.1021/ACSOMEGA.3C00333/ASSET/IMAGES/LARGE/AO3C00333_0011.JPEG.
  • Ishaq, S.; Moussa, M.; Kanwal, F.; Ehsan, M.; Saleem, M.; Van, T. N.; Losic, D. Facile Synthesis of Ternary Graphene Nanocomposites with Doped Metal Oxide and Conductive Polymers as Electrode Materials for High Performance Supercapacitors. Sci. Rep. 2019, 9, 5974. DOI: 10.1038/s41598-019-41939-y.
  • Takenaka, S.; Miyake, S.; Uwai, S.; Matsune, H.; Kishida, M. Preparation of Metal Oxide Nanofilms Using Graphene Oxide as a Template. J. Phys. Chem. C 2015, 119, 12445–12454. DOI: 10.1021/ACS.JPCC.5B02447/SUPPL_FILE/JP5B02447_SI_001.PDF.
  • Hofmann, A. I.; Cloutet, E.; Hadziioannou, G. Materials for Transparent Electrodes: From Metal Oxides to Organic Alternatives. Adv. Elect. Mater. 2018, 4, 1700412. DOI: 10.1002/aelm.201700412.
  • Luan, V. H.; Han, J. H.; Kang, H. W.; Lee, W. Highly Porous and Capacitive Copper Oxide Nanowire/Graphene Hybrid Carbon Nanostructure for High-Performance Supercapacitor Electrodes. Compos. B Eng. 2019, 178, 107464. DOI: 10.1016/j.compositesb.2019.107464.
  • Byun, S.-C.; Park, S.-J.; Kim, I.; Kim, S. Fabrication and Characterization of the Graphene Composites Containing Embedded Manganese Dioxide Nanoparticles. J. Nanosci. Nanotechnol. 2017, 18, 284–287. DOI: 10.1166/JNN.2018.14586.
  • Ji, Z.; Shen, X.; Zhu, G.; Zhou, H.; Yuan, A. Reduced Graphene Oxide/Nickel Nanocomposites: Facile Synthesis, Magnetic and Catalytic Properties. J. Mater. Chem. 2012, 22, 3471–3477. DOI: 10.1039/c2jm14680k.
  • Kurc, B.; Siwińska-Stefańska, K.; Jakóbczyk, P.; Jesionowski, T. Titanium Dioxide/Graphene Oxide Composite and Its Application as an Anode Material in Non-Flammable Electrolyte Based on Ionic Liquid and Sulfolane. J. Solid State Electrochem. 2016, 20, 1971–1981. DOI: 10.1007/S10008-016-3192-9/FIGURES/10.
  • Park, S.-E.; Park, S.-J.; Kim, S. Preparation and Capacitance Behaviors of Cobalt Oxide/Graphene Composites. Carbon Lett. 2012, 13, 130–132. DOI: 10.5714/CL.2012.13.2.130.
  • Yew, Y. P.; Shameli, K.; Miyake, M.; Ahmad Khairudin, N. B. B.; Mohamad, S. E. B.; Naiki, T.; Lee, K. X. Green Biosynthesis of Superparamagnetic Magnetite Fe3O4 Nanoparticles and Biomedical Applications in Targeted Anticancer Drug Delivery System: A Review. Arab. J. Chem. 2020, 13, 2287–2308. DOI: 10.1016/j.arabjc.2018.04.013.
  • Velasco, A.; Ryu, Y. K.; Boscá, A.; Ladrón-De-Guevara, A.; Hunt, E.; Zuo, J.; Pedrós, J.; Calle, F.; Martinez, J. Recent Trends in Graphene Supercapacitors: From Large Area to Microsupercapacitors. Sustainable Energy Fuels 2021, 5, 1235–1254. DOI: 10.1039/D0SE01849J.
  • Ates, M.; Caliskan, S.; Gazi, M. A Ternary Nanocomposites of Graphene/TiO2/Polypyrrole for Energy Storage Applications. Fullerenes, Nanotub. Carbon Nanostruct. 2018, 26, 631–642. DOI: 10.1080/1536383X.2018.1457651.
  • Kim, J.; Jung, Y.; Kim, S. Microwave-Assisted One-Pot Synthesis of Iron(II, III) Oxide/Reduced Graphene Oxide for an Application of Supercapacitor Electrode. Carbon Lett. 2019, 29, 411–418. DOI: 10.1007/S42823-019-00045-9/METRICS.
  • Khoh, W. H.; Hong, J. D. Layer-by-Layer Self-Assembly of Ultrathin Multilayer Films Composed of Magnetite/Reduced Graphene Oxide Bilayers for Supercapacitor Application. Colloids Surf. A Physicochem. Eng. Asp. 2013, 436, 104–112. DOI: 10.1016/j.colsurfa.2013.06.012.
  • Yan, F.; Ding, J.; Liu, Y.; Wang, Z.; Cai, Q.; Zhang, J. Fabrication of Magnetic Irregular Hexagonal-Fe3O4 Sheets/Reduced Graphene Oxide Composite for Supercapacitors. Synth. Met. 2015, 209, 473–479. DOI: 10.1016/j.synthmet.2015.08.023.
  • Kumar, R.; Singh, R. K.; Vaz, A. R.; Savu, R.; Moshkalev, S. A. Self-Assembled and One-Step Synthesis of Interconnected 3D Network of Fe3O4/Reduced Graphene Oxide Nanosheets Hybrid for High-Performance Supercapacitor Electrode. ACS Appl. Mater. Interfaces 2017, 9, 8880–8890. DOI: 10.1021/ACSAMI.6B14704/SUPPL_FILE/AM6B14704_SI_001.PDF.
  • Cheng, P.; Guo, P.; Liu, D.; Wang, Y.; Sun, K.; Zhao, Y.; He, D. Fe3O4/RGO Modified Separators to Suppress the Shuttle Effect for Advanced Lithium-Sulfur Batteries. J. Alloys Compd. 2019, 784, 149–156. DOI: 10.1016/j.jallcom.2019.01.041.
  • Martinez, U.; Rojas-Carbonell, S.; Halevi, B.; Yoshimura, K.; Shishitani, H.; Yamaguchi, S.; Bansal, K.; Singh, J.; Dhaliwal, A. S. Synthesis and Characterization of Graphene Oxide and Its Reduction with Different Reducing Agents. IOP Conf. Ser.: Mater. Sci. Eng. 2022, 1225, 012050. DOI: 10.1088/1757-899X/1225/1/012050.
  • Bansal, K.; Singh, J.; Dhaliwal, A. S. Synthesis of Silver-Decorated Nanocomposite Based on Reduced Graphene Oxide and Its Electrochemical Performance. Fullerenes Nanotub. Carbon Nanostruct. 2023, 31, 277–287. DOI: 10.1080/1536383X.2022.2144840.
  • Bansal, K.; Singh, J.; Dhaliwal, A. S. Green Synthesis and Characterization of Superparamagnetic Nanocomposite Based on Reduced Graphene Oxide/Fe3O4 Prepared Using Leaf Extract of Azadirachta Indica. Inorg. Nano-Metal Chem. 2023, 0, 1–9. DOI: 10.1080/24701556.2023.2165688.
  • Bhujel, R.; Rai, S.; Deka, U.; Swain, B. P. Electrochemical, Bonding Network and Electrical Properties of Reduced Graphene Oxide-Fe2O3 Nanocomposite for Supercapacitor Electrodes Applications. J. Alloys Compd. 2019, 792, 250–259. DOI: 10.1016/j.jallcom.2019.04.004.
  • Devi, N. A.; Nongthombam, S.; Sinha, S.; Bhujel, R.; Rai, S.; Singh, W. I.; Dasgupta, P.; Swain, B. P. Investigation of Chemical Bonding and Supercapacitivity Properties of Fe3O4-RGO Nanocomposites for Supercapacitor Applications. Diam. Relat. Mater. 2020, 104, 107756. DOI: 10.1016/j.diamond.2020.107756.
  • Ahamed, M.; Akhtar, M. J.; Majeed Khan, M. A.; Alhadlaq, H. A. A Novel Green Preparation of Ag/RGO Nanocomposites with Highly Effective Anticancer Performance. Polymers 2021, 13, 3350. DOI: 10.3390/POLYM13193350.
  • Çıplak, Z.; Yıldız, N. Ag@Fe3O4 Nanoparticles Decorated NrGO Nanocomposite for Supercapacitor Application. J. Alloys Compd. 2023, 941, 169024. DOI: 10.1016/j.jallcom.2023.169024.
  • Sinha, S.; Devi, N. A.; Nongthombam, S.; Bhujel, R.; Rai, S.; Sarkar, G.; Swain, B. P. Investigation of Optical, Electrical and Electrochemical Properties of Polyaniline/RGO/Ag2O Nanocomposite. Diam. Relat. Mater. 2020, 107, 107885. DOI: 10.1016/j.diamond.2020.107885.
  • Tamang, S.; Rai, S.; Bhujel, R.; Bhattacharyya, N. K.; Swain, B. P.; Biswas, J. A Concise Review on GO, RGO and Metal Oxide/RGO Composites: Fabrication and Their Supercapacitor and Catalytic Applications. J. Alloys Compd. 2023, 947, 169588. DOI: 10.1016/j.jallcom.2023.169588.
  • Shao, G.; Lu, Y.; Wu, F.; Yang, C.; Zeng, F.; Wu, Q. Graphene Oxide: The Mechanisms of Oxidation and Exfoliation. J. Mater. Sci. 2012, 47, 4400–4409. DOI: 10.1007/S10853-012-6294-5/FIGURES/9.
  • Pu, J.; Wan, S.; Zhao, W.; Mo, Y.; Zhang, X.; Wang, L.; Xue, Q. Preparation and Tribological Study of Functionalized Graphene-IL Nanocomposite Ultrathin Lubrication Films on Si Substrates. J. Phys. Chem. C 2011, 115, 13275–13284. DOI: 10.1021/JP111804A/ASSET/IMAGES/MEDIUM/JP-2010-11804A_0002.GIF.
  • Liang, Y.; Lu, W. Gamma-Irradiation Synthesis of Fe3O4/RGO Nanocomposites as Lithium-Ion Battery Anodes. J. Mater. Sci: Mater. Electron. 2020, 31, 17075–17083. DOI: 10.1007/S10854-020-04268-9/TABLES/1.
  • Liao, J.; Li, Y.; Wang, Z.; Lv, L.; Chang, L. In-Situ Preparation of Fe3O4/Graphene Nanocomposites and Their Electrochemical Performances for Supercapacitor. Mater. Chem. Phys. 2021, 258, 123995. DOI: 10.1016/j.matchemphys.2020.123995.
  • Ma, Z.; Qiu, Y.; Yang, H.; Huang, Y.; Liu, J.; Lu, Y.; Zhang, C.; Hu, P. Effective Synergistic Effect of Dipeptide-Polyoxometalate-Graphene Oxide Ternary Hybrid Materials on Peroxidase-like Mimics with Enhanced Performance. ACS Appl. Mater. Interfaces 2015, 7, 22036–22045. DOI: 10.1021/ACSAMI.5B07046/SUPPL_FILE/AM5B07046_SI_001.PDF.
  • Çıplak, Z.; Yıldız, N. The Effect of Ag Loading on Supercapacitor Performance of Graphene Based Nanocomposites. Fullerenes, Nanotub. Carbon Nanostruct. 2019, 27, 65–76. DOI: 10.1080/1536383X.2018.1504022.
  • Ansari, A. R.; Ansari, S. A.; Parveen, N.; Ansari, M. O.; Osman, Z. Silver Nanoparticle Decorated on Reduced Graphene Oxide-Wrapped Manganese Oxide Nanorods as Electrode Materials for High-Performance Electrochemical Devices. Crystals 2022, 12, 389. DOI: 10.3390/cryst12030389.
  • Kumar, R.; Youssry, S. M.; Soe, H. M.; Abdel-Galeil, M. M.; Kawamura, G.; Matsuda, A. Honeycomb-like Open-Edged Reduced-Graphene-Oxide-Enclosed Transition Metal Oxides (NiO/Co3O4) as Improved Electrode Materials for High-Performance Supercapacitor. J. Energy Storage 2020, 30, 101539. DOI: 10.1016/j.est.2020.101539.
  • Ates, M.; Caliskan, S.; Ozten, E. A Ternary Nanocomposite of Reduced Graphene Oxide, Ag Nanoparticle and Polythiophene Used for Supercapacitors. Fullerenes, Nanotub. Carbon Nanostruct. 2018, 26, 360–369. DOI: 10.1080/1536383X.2018.1438414.
  • Devi, N. A.; Sinha, S.; Singh, W. I.; Nongthombam, S.; Swain, B. P. Silver-Decorated Reduced Graphene Oxide Nanocomposite for Supercapacitor Electrode Application. Bull. Mater. Sci. 2022, 45, 1–11. DOI: 10.1007/S12034-021-02583-3/FIGURES/8.
  • Senthilkumar, S. T.; Selvan, R. K.; Lee, Y. S.; Melo, J. S. Electric Double Layer Capacitor and Its Improved Specific Capacitance Using Redox Additive Electrolyte. J. Mater. Chem. A 2013, 1, 1086–1095. DOI: 10.1039/C2TA00210H.
  • Pal, S.; Majumder, S.; Dutta, S.; Banerjee, S.; Satpati, B.; De, S. Magnetic Field Induced Electrochemical Performance Enhancement in Reduced Graphene Oxide Anchored Fe3O4 Nanoparticle Hybrid Based Supercapacitor. J. Phys. D: Appl. Phys. 2018, 51, 375501. DOI: 10.1088/1361-6463/aad5b3.
  • Zhang, Y.; Li, G. Y.; Lv, Y.; Wang, L. Z.; Zhang, A. Q.; Song, Y. H.; Huang, B. L. Electrochemical Investigation of MnO2 Electrode Material for Supercapacitors. Int. J. Hydrogen Energy 2011, 36, 11760–11766. DOI: 10.1016/j.ijhydene.2011.06.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.