44
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Thermo-oxidative degradation of carbon nanotubes and related nanostructures: role of acidic environment and chloride ions

, , , &
Pages 676-683 | Received 06 Dec 2023, Accepted 14 Feb 2024, Published online: 27 Feb 2024

References

  • Mordkovich, V. Z.; Khaskov, M. A.; Naumova, V. A.; De, V. V.; Kulnitskiy, B. A.; Karaeva, A. R. The Importance of Water for Purification of Longer Carbon Nanotubes for Nanocomposite Applications. J. Compos. Sci. 2023, 7, 79. DOI: 10.3390/jcs7020079.
  • Sugime, H.; Sato, T.; Nakagawa, R.; Hayashi, T.; Inoue, Y.; Noda, S. Ultra-Long Carbon Nanotube Forest via in Situ Supplements of Iron and Aluminum Vapor Sources. Carbon 2021, 172, 772–780. DOI: 10.1016/j.carbon.2020.10.066.
  • Karaeva, A. R.; Khaskov, M. A.; Mitberg, E. B.; Kulnitskiy, B. A.; Perezhogin, I. A.; Ivanov, L. A.; Denisov, V. N.; Kirichenko, A. N.; Mordkovich, V. Z. Longer Carbon Nanotubes by Controlled Catalytic Growth in the Presence of Water Vapor. Fuller. Nanotub. Carbon Nanostruct. 2012, 20, 411–418. DOI: 10.1080/1536383X.2012.655229.
  • Ge, C.; Lao, F.; Li, W.; Li, Y.; Chen, C.; Qiu, Y.; Mao, X.; Li, B.; Chai, Z.; Zhao, Y. Quantitative Analysis of Metal Impurities in Carbon Nanotubes: Efficacy of Different Pretreatment Protocols for ICPMS Spectroscopy. Anal. Chem. 2008, 80, 9426–9434. DOI: 10.1021/ac801469b.
  • Wang, L.; Ambrosi, A.; Pumera, M. Carbonaceous Impurities in Carbon Nanotubes Are Responsible for Accelerated Electrochemistry of Cytochrome C. Anal. Chem. 2013, 85, 6195–6197. DOI: 10.1021/ac4010748.
  • Chen, J. Effects of Structure, Purity, and Alignment on the Heat Conduction Properties of a Nanostructured Material Comprising Carbon Nanotubes. DYSONA Appl. Sci. 2022, 3, 46–55. DOI: 10.30493/DAS.2022.327865.
  • Yaya, A.; Dodoo-Arhin, D.; Onwona-Agyeman, B.; Konadu, D. S.; Brown, H. M.; Sinayobye, E. Effects of Purity on the Mechanical Properties of Single-Walled Carbon Nanotubes-Polymer Nanocomposites. BJAST. 2013, 3, 884–897. DOI: 10.9734/BJAST/2013/4052.
  • Park, M.; Choi, I.-S.; Ju, S.-Y. Quantification and Removal of Carbonaceous Impurities in a Surfactant-Assisted Carbon Nanotube Dispersion and Its Implication on Electronic Properties. Nanoscale Adv. 2022, 4, 3537–3548. DOI: 10.1039/D2NA00153E.
  • Durso, M. N.; Hart, A. J. Purification of Dense Carbon Nanotube Networks by Subcritical Hydrothermal Processing. Carbon Trends 2022, 9, 100206. DOI: 10.1016/j.cartre.2022.100206.
  • Rinzler, A. G.; Liu, J.; Dai, H.; Nikolaev, P.; Huffman, C. B.; Rodríguez-Macías, F. J.; Boul, P. J.; Lu, A. H.; Heymann, D.; Colbert, D. T.; et al. Large-Scale Purification of Single-Wall Carbon Nanotubes: Process, Product, and Characterization. Appl Phys. A 1998, 67, 29–37. DOI: 10.1007/s003390050734.
  • Sheng, L.; Shi, L.; An, K.; Yu, L.; Ando, Y.; Zhao, X. Effective and Efficient Purification of Single-Wall Carbon Nanotubes Based on Hydrogen Treatment. Chem. Phys. Lett. 2011, 502, 101–106. DOI: 10.1016/j.cplett.2010.12.034.
  • Khanbolouki, P.; Tehrani, M. Purification, Structural Evolutions, and Electrical Properties of Carbon Nanotube Yarns Processed via Incandescent Annealing. Carbon 2020, 168, 710–718. DOI: 10.1016/j.carbon.2020.06.069.
  • Cebulak, S.; Smieja-Król, B.; Duber, S.; Misz, M.; Morawski, A. W. Oxyreactive Thermal Analysis. A Good Tool for the Investigation of Carbon Materials. J. Therm. Anal. Calorim. 2004, 77, 201–206. DOI: 10.1023/B:JTAN.0000033204.53768.bb.
  • Mashhadimoslem, H.; Ghaemi, A.; Maleki, A.; Elkamel, A. Enhancement of Oxygen Adsorption Using Biomass-Based Oxidized Porous Carbon. J. Environ. Chem. Eng. 2023, 11, 109300. DOI: 10.1016/j.jece.2023.109300.
  • Ni, S.; Li, Z.; Yang, J. Oxygen Molecule Dissociation on Carbon Nanostructures with Different Types of Nitrogen Doping. Nanoscale 2012, 4, 1184–1189. DOI: 10.1039/C1NR11086A.
  • Qi, X.; Song, W.; Shi, J. Density Functional Theory Study the Effects of Oxygen-Containing Functional Groups on Oxygen Molecules and Oxygen Atoms Adsorbed on Carbonaceous Materials. PLoS One. 2017, 12, e0173864. DOI: 10.1371/journal.pone.0173864.
  • Khaskov, M. A.; Karaeva, АR.; Denisov, V. N.; Kulnitskiy, B. A.; Mordkovich, V. Z. Physical and Chemical Properties of Carbon Nanotube-Based Fibrous Deposit. Chem. Chem. Tech. 2013, 56, 76–79.
  • Khaskov, M. A.; Shestakov, A. M.; Sorokin, O. Y.; Zelenina, I. V. Synthesis of Carbon Matrix with Tunable Carbide Formation Ability for Reactive Infiltration Techniques. Ceram. Int. 2020, 46, 21632–21637. DOI: 10.1016/j.ceramint.2020.05.269.
  • Cebulak, S.; Gaw\ceda, A.; Langier-Kużniarowa, A. Oxyreactive Thermal Analysis of Dispersed Organic Matter, Kerogen and Carbonization Products A Tool for Investigation of the Heated Rock Masses. J. Therm. Anal. Calorim. 1999, 56, 917–924. DOI: 10.1023/A:1010147315595.
  • Jorio, A.; Saito, R. Raman Spectroscopy for Carbon Nanotube Applications. J. Appl. Phys. 2021, 129, 021102. DOI: 10.1063/5.0030809.
  • Yan, X.; Jia, Y.; Yao, X. Defects on Carbons for Electrocatalytic Oxygen Reduction. Chem. Soc. Rev. 2018, 47, 7628–7658. DOI: 10.1039/C7CS00690J.
  • Sun, Z.; Chai, L.; Shu, Y.; Li, Q.; Liu, M.; Qiu, D. Chemical Bond between Chloride Ions and Surface Carboxyl Groups on Activated Carbon. Colloids Surf. 2017, 530, 53–59. DOI: 10.1016/j.colsurfa.2017.06.077.
  • Khaskov, M. A.; Gulyaev, A. I.; Sinyakov, S. D.; Ponomarenko, S. A. The Using of Thermal Analysis Methods for Study of Pore Formation in the System Resol Phenol-Formaldehyde Resin – Ethylene Glycol – p-Toluenesulfonyl Chloride. Mater. Chem. Phys. 2019, 233, 236–241. DOI: 10.1016/j.matchemphys.2019.05.060.
  • Shen, W.; Li, Z.; Liu, Y. Surface Chemical Functional Groups Modification of Porous Carbon. Rec. Pat. Chem. Eng. 2008, 1, 27–40. DOI: 10.2174/2211334710801010027.
  • Prosenko, A. E. Sulfur-, Nitrogen- and Phosphorus-Containing Polyfunctional Antioxidants Based on Alkylated Phenols: Synthesis, Properties, Prospects of Application. Abstract of the Thesis for the Degree of Doctor of Science in Chemistry, Novosibirsk State Pedagogical University, Novosibirsk, 2010. http://web.nioch.nsc.ru/templates/purity_iii/files/avtoreferats/procenko.pdf.
  • Cataldo, F. On the Reactivity of C60 Fullerene with Diene Rubber Macroradicals. I. The Case of Natural and Synthetic Cis-1,4-Polyisoprene under Anaerobic and Thermooxidative Degradation Conditions. Fullerene Sci. Technol. 2001, 9, 497–513. DOI: 10.1081/FST-100107152.
  • Zouaoui, N.; Labaki, M.; Jeguirim, M. Diesel Soot Oxidation by Nitrogen Dioxide, Oxygen and Water under Engine Exhaust Conditions: Kinetics Data Related to the Reaction Mechanism. CR. Chim. 2014, 17, 672–680. DOI: 10.1016/j.crci.2013.09.004.
  • Supee, A. H.; Zaini, M. A. A. Hydrothermal Carbonization of Biomass: A Commentary. Fuller. Nanotub. Carbon Nanostruct. 2024, 32, 119–127. DOI: 10.1080/1536383X.2023.2270089.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.