71
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Isoprene polymerization using heterogeneous neodymium catalysts supported by a polysiloxane covered nanodiamonds

, , , &
Pages 684-689 | Received 22 Jan 2024, Accepted 14 Feb 2024, Published online: 28 Feb 2024

References

  • Parkatzidis, K.; Wang, H. S.; Truong, N. P.; Anastasaki, A. Recent Developments and Future Challenges in Controlled Radical Polymerization: A 2020 Update. Chem 2020, 6, 1575–1588. DOI: 10.1016/j.chempr.2020.06.014.
  • Qin, J.-X.; Yang, X.-G.; Lv, C.-F.; Li, Y.-Z.; Liu, K.-K.; Zang, J.-H.; Yang, X.; Dong, L.; Shan, C.-X. Nanodiamonds: Synthesis, Properties, and Applications in Nanomedicine. Mater. Des. 2021, 210, 110091. DOI: 10.1016/j.matdes.2021.110091.
  • Olia, M. B. A.; Donnelly, P. S.; Hollenberg, L. C. L.; Mulvaney, P.; Simpson, D. A. Advances in the Surface Functionalization of Nanodiamonds for Biological Applications: A Review. ACS Appl. Nano Mater. 2021, 4, 9985–10005. DOI: 10.1021/acsanm.1c02698.
  • Mumtaz, M.; Hussain, N.; Salam, S.; Bilal, M. Multifunctional Nanodiamonds as Emerging Platforms for Cancer Treatment, and Targeted Delivery of Genetic Factors and Protein Medications—a Review. J. Mater. Sci. 2022, 57, 8064–8099. DOI: 10.1007/s10853-022-07168-x.
  • Zhang, Y.; Rhee, K. Y.; Hui, D.; Park, S.-J. A Critical Review of Nanodiamond Based Nanocomposites: Synthesis, Properties and Applications. Compos. Part B. Eng. 2018, 143, 19–27. DOI: 10.1016/j.compositesb.2018.01.028.
  • Porri, L.; Giarrusso, A. Conjugated Diene Polymerization. In Comprehensive Polymer Science; Eastmond, G.; Edwith, A.; Russo, S.; Sigwalt, P. Eds.; Pergamon Press Ltd: Oxford, 1989; pp 53–108.
  • Delferro, M.; Marks, T. J. Multinuclear Olefin Polymerization Catalysts. Chem. Rev. 2011, 111, 2450–2485. DOI: 10.1021/cr1003634.
  • Scoti, M.; De Stefano, F.; Zanchin, G.; Leone, G.; De Rosa, C.; Ricci, G. Synthesis, Structure, and Properties of Poly(Isoprene)s of Different Constitutions and Configurations from Catalysts Based on Complexes of Nd, Co, and Fe. Macromolecules 2023, 56, 4629–4638. DOI: 10.1021/acs.macromol.3c00615.
  • Knite, M.; Klemenok, I.; Shakale, G.; Teteris, V.; Zicans, J. Polyisoprene-Carbon Nano-Composites for Application in Multifunctional Sensors. J. Alloys Comp. 2007, 434-435, 850–853. DOI: 10.1016/j.jallcom.2006.08.098.
  • Ostanin, S. A.; Kalinin, A. V.; Bratsyhin, Y. Y.; Saprykina, N. N.; Zuev, V. V. Linear/Ladder-Like Polysiloxane Block Copolymers with Methyl-, Trifluoropropyl- and Phenyl-Siloxane Units for Surface Modification. Polymers 2021, 13, 2063. DOI: 10.3390/polym13132063.
  • Dolmatov, V. Y. Detonation Synthesis Nanodiamonds: Synthesis, Structure, Properties and Applications. Russ. Chem. Rev. 2007, 76, 339–360. DOI: 10.1070/RC2001v070n07ABEH000665.
  • Reina, G.; Zhao, L.; Bianco, A.; Komatsu, N. Chemical Functionalization of Nanodiamonds: Opportunities and Challenges Ahead. Angew. Chem. Int. Ed. Engl. 2019, 58, 17918–17929. DOI: 10.1002/anie.201905997.
  • Neburkova, J.; Vavra, J.; Cigler, P. Coating Nanodiamonds with Biocompatible Shells for Applications in Biology and Medicine. Curr. Opin. Solid State Mater. Sci. 2017, 21, 43–53. DOI: 10.1016/j.cossms.2016.05.008.
  • Uthappa, U.T.; Arvind, O.R.; Sriram, G.; Losic, D; Ho-Young-Jung Kigga, M.; Kurkuri, M.D. Nanodiamonds and Their Surface Modification Strategies for Drug Delivery Applications. J. Drug Deliv. Sci. Technol. 2020, 60, 101993. DOI: 10.1016/j.jddst.2020.10199312.
  • Edgington, R.; Spillane, K. M.; Papageorgiou, G.; Wray, W.; Ishiwata, H.; Labarca, M.; Leal-Ortiz, S.; Reid, G.; Webb, M.; Foord, J.; et al. Functionalisation of Detonation Nanodiamond for Monodispersed, Soluble DNA-Nanodiamond Conjugates Using Mixed Silane Bead-Assisted Sonication Disintegration. Sci. Rep. 2018, 8, 728–728. DOI: 10.1038/s41598-017-18601-6.
  • Gupta, S.; Bhunia, R.; Fatma, B.; Maurya, D.; Singh, D.; Prateek, D.; Gupta, R.; Priya, S.; Gupta, R.K.; Garg, A. Multifunctional and Flexible Polymeric Nanocomposite Films with Improved Ferroelectric and Piezoelectric Properties for Energy Generation Devices, ACS Appl. Energy Mater. 2019, 2, 6364–6374. DOI: 10.1021/acsaem.9b01000.
  • Hoque, M.E.; Ramar, K.; Sharif, A., Eds. Advanced Polymer Nanocomposites. Science, Technology and Applications. Woodhead Publ.: Sawston, Cambridge, UK, 2022; pp 581. DOI: 10.1016/C2020-0-01039-X.
  • Wang, H.; Cue, J. M. O.; Calubaquib, E. L.; Kularatne, R. N.; Taslimy, S.; Miller, J. T.; Stefan, M. C. Neodymium Catalysts for Polymerization of Dienes, Vinyl Monomers, and ε-Caprolactone. Polym. Chem. 2021, 12, 6790–6823. DOI: 10.1039/D1PY01270C.
  • Haddadi, S. A.; Ramazani, A.; Amini, M.; Kheradmand, A. In-Situ Preparation and Characterization of Ultra-High Molecular Weight Polyethylene/Diamond Nanocomposites Using Bi-Supported Ziegler-Natta Catalyst: Effect of Nanodiamond Silanization. Mater. Commun. Today 2018, 14, 53–64. DOI: 10.1016/j.mtcomm.2017.12.011.
  • Shen, Q. Advances in Unusual Interfacial Polymerization Techniques. Polymer 2023, 270, 125788. DOI: 10.1016/j.polymer.2023.125788.
  • Vershinin, N. N.; Efimov, O. N.; Bakaev, V. A.; Aleksenskii, A. E.; Baidakova, M. V.; Sitnikova, A. A.; Vul’, A. Detonation Nanodiamonds as Catalyst Supports. Fullerenes Nanotubes Carbon Nanostruct. 2010, 19, 63–68. DOI: 10.1080/1536383X.2010.490143.
  • Rozhkova, N. N.; Gorlenko, L. E.; Yemelyanova, G. I.; Lunin, V. V.; Ōsawa, E. Catalytic Activity of Nanodiamonds in Redox Process. Fullerenes Nanotubes Carbon Nanostruct. 2012, 20, 622–627. DOI: 10.1080/1536383X.2012.657030.
  • Friebe, L.; Nuyken, O.; Obrecht, W. Neodymium-Based Ziegler/Natta Catalysts and Their Application in Diene Polymerization. Adv. Polym. Sci. 2006, 204, 1–154. DOI: 10.1007/12_094.
  • Ramazani, A.; Tavakolzadeh, F.; Baniasadi, H. In Situ Polymerization of Polyethylene/Clay Nanocomposites Using a Novel Clay-Supported Ziegler-Natta Catalyst. Polym. Compos. 2009, 30, 1388–1393. DOI: 10.1002/pc.20702.
  • Aguirre, M.; Ballard, N.; Gonzalez, E.; Hamzehlou, S.; Sardon, H.; Calderon, M.; Paulis, M.; Tomovska, R.; Dupin, D.; Bean, R. H.; et al. Polymer Colloids: Current Challenges, Emerging Applications, and New Developments. Macromolecules 2023, 56, 2579–2607. DOI: 10.1021/acs.macromol.3c00108.
  • Mark, J. E.; Erman, B.; Roland, M. The Science and Technology of Rubber; Academic Press: Cambridge, MA, USA, 2013.
  • Tanaka, Y.; Sato, H. Sequence Distribution of Polyisoprenes. Polymer 1976, 17, 113–116. DOI: 10.1016/0032-3861(76)90237-8.
  • Wang, H.; Yang, Y.; Nishiura, M.; Hong, Y.-L.; Nishiyama, Y.; Higaki, Y.; Hou, Z. Making Polyisoprene Self-Healable through Microstructure Regulation by Rare-Earth Catalysts. Angew. Chem. Int. Ed. 2022, 61, e202210023. DOI: 10.1002/anie.202210023.
  • Wang, X.; Wu, L.; Yu, H.; Xiao, T.; Li, H.; Yang, J. Analysis of Effect of Modification of Silica and Carbon Black Co-Filled Rubber Composite on Mechanical Properties. Polym. Test 2020, 91, 106840. DOI: 10.1515/epoly-2021-0034.
  • Zhou, C.; Wang, J.; Zhou, P.; Wang, G. A Polymerization-Induced Self-Assembly Process for All-Styrenic Nano-Objects Using the Living Anionic Polymerization Mechanism. Polym. Chem. 2020, 11, 2635–2639. DOI: 10.1039/D0PY00296H.
  • Zuev, V. V. Polymer Nanocomposites Containing Fullerene C60 Nanofillers. Macromol. Symp. 2011, 301, 157–161. DOI: 10.1002/masy.201150320.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.