47
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Energy barriers of Be and B in passing through the C60 fullerene cage

, , &
Pages 701-709 | Received 25 Dec 2023, Accepted 15 Feb 2024, Published online: 06 Mar 2024

References

  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. DOI: 10.1126/science.1102896.
  • Physics and Chemistry of Graphene (2nd Edition), Graphene to Nanographene; Enoki, T., Ando, T., Ed.; Jenny Stanford Publishing: New York, NY, 2019.
  • Sattler, K. D., Ed. Handbook of Nanophysics. Clusters and Fullerenes; CRC Press; Taylor & Francis Group: London, 2011.
  • Popov, A. A.; Yang, S.; Dunsch, L. Endohedral Fullerenes. Chem. Rev. 2013, 113, 5989–6113. DOI: 10.1021/cr300297r.
  • Shinohara, H.; Tagmatarchis, N. Endohedral Metallofullerenes: Fullerenes with Metal Inside; John Wiley & Sons: Chichester, UK, 2015.
  • Popov, A. A., Ed. Endohedral Fullerenes: Electron Transfer and Spin; Springer: Cham, Switzerland, 2017.
  • Cataldo, F.; da Ros, T., Eds. Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes; Springer: Dordrecht, 2008.
  • Lu, X.; Echegoyen, L.; Balch, A. L.; Nagase, S.; Akasaka, T., Eds. Endohedral Metallofullerenes. Basics and Applications; CRC Press: Boca Raton, FL, 2014.
  • Vessally, E.; Siadati, S. A.; Hosseinian, A.; Edjlali, L. Selective Sensing of Ozone and the Chemically Active Gaseous Species of the Troposphere by Using the C20 Fullerene and Graphene Segment. Talanta 2017, 162, 505–510. DOI: 10.1016/j.talanta.2016.10.010.
  • Siadati, S. A.; Vessally, E.; Hosseinian, A.; Edjlali, L. Possibility of Sensing, Adsorbing, and Destructing the Tabun-2D-Skeletal (Tabun Nerve Agent) by C20 Fullerene and Its Boron and Nitrogen Doped Derivatives. Synth. Met. 2016, 220, 606–611. DOI: 10.1016/j.synthmet.2016.08.003.
  • Malouff, T. D.; Seneviratne, D. S.; Ebner, D. K.; Stross, W. C.; Waddle, M. R.; Trifiletti, D. M.; Krishnan, S. Boron Neutron Capture Therapy: A Review of Clinical Applications. Front. Oncol. 2021, 11, 601820. DOI: 10.3389/fonc.2021.601820.
  • Locher, G. L. Biological Effects and Therapeutic Possibilities of Neutrons. Am. J. Roentgenol. 1936, 36, 1.
  • Farr, L. E.; Sweet, W. H.; Locksley, H. B.; Robertson, J. S. Neutron Capture Therapy of Gliomas Using Boron. Transactions of the American Neurological Association (79th Meeting); 1954; Vol. 13, pp 110.
  • Barth, R. F.; Grecula, J. C. Boron Neutron Capture Therapy at the Crossroads – Where Do we Go from Here? Appl. Radiat. Isot. 2020, 160, 109029. DOI: 10.1016/j.apradiso.2019.109029.
  • Rauscher, T.; Raimann, G. Astrophysical Reaction Rates for 10B (p,α)7 Be and 11B (p,α)8 Be from a Direct Model. Phys. Rev. C 1996, 53, 2496–2504. DOI: 10.1103/PhysRevC.53.2496.
  • Scorciapino, M. A.; Nunes, C.; Ceccarelli, M.; Tkalya, E.; Bodrenko, I. New Perspectives for Neutron Capture Radiation Therapy with 7Be. The Chemistry and Biochemistry Gap. J. Nanosci. Nanotechnol. 2021, 21, 2939–2942. DOI: 10.1166/jnn.2021.19044.
  • Ohtsuki, T.; Yuki, H.; Muto, M.; Kasagi, J.; Ohno, K. Enhanced Electron-Capture Decay Rate of 7Be Encapsulated in C60 Cages. Phys. Rev. Lett. 2004, 93, 112501. DOI: 10.1103/PhysRevLett.93.112501.
  • Tkalya, E. V.; Bibikov, A. V.; Bodrenko, I. V. Electron Capture Decay of 7Be Encapsulated in C60: Origin of Increased Electron Density at the 7Be Nucleus. Phys. Rev. C 2010, 81, 024610. DOI: 10.1103/PhysRevC.81.024610.
  • Bibikov, A. V.; Avdeenkov, A. V.; Bodrenko, I. V.; Nikolaev, A. V.; Tkalya, E. V. Theoretical Study of the Pressure Effect on the Electron-Capture Decay of 7Be in 7BeO and 7Be(OH)2. Phys. Rev. C 2013, 88, 034608. DOI: 10.1103/PhysRevC.88.034608.
  • Bibikov, A. V.; Nikolaev, A. V.; Tkalya, E. V. Estimation of the Decay Rate of 7Be and 7Be2 Encapsulated in C70. Phys. Rev. C 2019, 100, 064603. DOI: 10.1103/PhysRevC.100.064603.
  • Bibikov, A. V.; Nikolaev, A. V.; Bodrenko, I. V.; Borisyuk, P. V.; Tkalya, E. V. Multiple Locations of Boron Atoms in the Exohedral and Endohedral C60 Fullerene. Phys. Rev. A 2022, 105, 022813. DOI: 10.1103/PhysRevA.105.022813.
  • Churilov, G. N. Synthesis of Fullerenes and Other Nanomaterials in Arc Discharge. Fullerenes, Nanotubes and Carbon Nanostructures 2008, 16, 395–403. DOI: 10.1080/15363830802281641.
  • Novikov, P. V.; Osipova, I. V.; Churilov, G. N.; Dudnik, A. I. Simulation of Fullerene Formation in a Carbon-Helium Plasma. Fullerenes Nanotubes Carbon Nanostruct. 2020, 29, 337–342. DOI: 10.1080/1536383X.2020.1842738.
  • Tellgmann, R.; Krawez, N.; Lin, S. H.; Hertel, I. V.; Campbell, E. E. B. Endohedral Fullerene Production. Nature 1996, 382, 407–408. DOI: 10.1038/382407a0.
  • Campbell, E. E. B.; Tellgmann, R.; Krawez, N.; Hertel, I. V. Production and LDMS Characterisation of Endohedral Alkalisingle Bondfullerene Films. Phys. Chem. Solids 1997, 58, 1763–1769. DOI: 10.1016/S0022-3697(97)00063-2.
  • Almeida Murphy, T.; Pawlik, T.; Weidinger, A.; Höhne, M.; Alcala, R.; Spaeth, J. Observation of Atomlike Nitrogen in Nitrogen-Implanted Solid C60. Phys. Rev. Lett. 1996, 77, 1075–1078. DOI: 10.1103/PhysRevLett.77.1075.
  • Dietel, E.; Hirsch, A.; Pietzak, B.; Waiblinger, M.; Lips, K.; Weidinger, A.; Gruss, A.; Dinse, K. P. Atomic Nitrogen Encapsulated in Fullerenes: Effects of Cage Variations. J. Am. Chem. Soc. 1999, 121, 2432–2437. DOI: 10.1021/ja983812s.
  • Aoyagi, S.; Nishibori, E.; Sawa, H.; Sugimoto, K.; Takata, M.; Miyata, Y.; Kitaura, R.; Shinohara, H.; Okada, H.; Sakai, T.; et al. A Layered Ionic Crystal of Polar Li@C60 Superatoms. Nat. Chem. 2010, 2, 678–683. DOI: 10.1038/nchem.698.
  • Campbell, E. E. B.; Rohmund, F. Fullerene Reactions. Rep. Prog. Phys. 2000, 63, 1061–1109. DOI: 10.1088/0034-4885/63/7/202.
  • Saunders, M.; Cross, R. J.; Jiménez-Vázquez, H. A.; Shimshi, R.; Khong, A. Noble Gas Atoms inside Fullerenes. Science 1996, 271, 1693–1697. DOI: 10.1126/science.271.5256.1693.
  • Deng, R.; Echt, O. Hyperthermal Collisions of Atomic Clusters and Fullerenes. Int. J. Mass Spectrom. 2004, 233, 1–12. DOI: 10.1016/j.ijms.2003.11.019.
  • Murry, R. L.; Scuseria, G. E. Theoretical Evidence for a C60 “Window” Mechanism. Science 1994, 263, 791–793. DOI: 10.1126/science.263.5148.791.
  • Hrušák, J.; Böhme, D. K.; Weiske, T.; Schwarz, H. Ab Initio MO Calculation on the Energy Barrier for the Penetration of a Benzene Ring by a Helium Atom. Model Studies for the Formation of Endohedral He@C 60+ Radical Dot Complexes by High-Energy Bimolecular Reactions. Chem. Phys. Lett. 1992, 193, 97–100. DOI: 10.1016/0009-2614(92)85689-8.
  • Cui, F. Z.; Liao, D. X.; Li, H. D. Simulation Study of the Formation Mechanisms of Endohedral C60 by Atomic Collisions. Phys. Lett. A 1994, 195, 156–162. DOI: 10.1016/0375-9601(94)90089-2.
  • Patchkovskii, S.; Thiel, W. How Does Helium Get into Buckminsterfullerene? J. Am. Chem. Soc. 1996, 118, 7164–7172. DOI: 10.1021/ja9607695.
  • Mauser, H.; van Eikema Hommes, N. J. R.; Clark, T.; Hirsch, A.; Pietzak, B.; Weidinger, A.; Dunsch, L. Stabilization of Atomic Nitrogen Inside C60. Angew. Chem. Int. Ed. Engl. 1997, 36, 2835–2838. DOI: 10.1002/anie.199728351.
  • Waiblinger, M.; Lips, K.; Harneit, W.; Weidinger, A.; Dietel, E.; Hirsch, A. Corrected Article: Thermal Stability of the Endohedral Fullerenes N@C60, N@C70, and P@C60. Phys. Rev. B 2001, 63, 045421. DOI: 10.1103/PhysRevB.63.045421.
  • Gebac, L. C.; Niculescu, A. Encapsulating Ne inside C20H20. A Molecular Dynamics Study on the Stability of the Endohedral System. Fullerenes Nanotubes Carbon Nanostruct. 2023, 31, 583–591. DOI: 10.1080/1536383X.2023.2193399.
  • Gebac, L. C.; Bercu, M.; Filip, V. Molecular Dynamics of He Encapsulation in the C20H20 Cage at the Threshold Energy. Fullerenes Nanotubes Carbon Nanostruct. 2023, 31, 448–458. DOI: 10.1080/1536383X.2023.2179038.
  • Ohtsuki, T.; Masumoto, K.; Ohno, K.; Maruyma, Y.; Kawazoe, Y.; Sueki, K.; Kikuchi, K. Insertion of Be Atoms in C60 Fullerene Cages: Be@C60. Phys. Rev. Lett. 1996, 77, 3522–3524. DOI: 10.1103/PhysRevLett.77.3522.
  • Levine, IN. Quantum Chemistry, 7th ed.; Pearson: New York, 2013.
  • Becke, A. D. Perspective: Fifty Years of Density-Functional Theory in Chemical Physics. J. Chem. Phys. 2014, 140, 18A301.
  • Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; et al. General Atomic and Molecular Electronic Structure System. J. Comput. Chem. 1993, 14, 1347–1363. DOI: 10.1002/jcc.540141112.
  • Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. DOI: 10.1063/1.464913.
  • Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. DOI: 10.1021/j100096a001.
  • Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. DOI: 10.1103/PhysRevLett.77.3865.
  • Burke, K.; Perdew, J. P.; Wang, Y. Electronic Density Functional Theory: Recent Progress and New Directions; Dobson, J. F., Vignale, G., Das, M. P., Eds.; Plenum: New York, NY, 1998; pp 81.
  • Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
  • David, W. I. F.; Ibberson, R. M.; Matthewman, J. C.; Prassides, K.; Dennis, T. J. S.; Hare, J. P.; Kroto, H. W.; Taylor, R.; Walton, D. R. M. Crystal Structure and Bonding of Ordered C60. Nature 1991, 353, 147–149. DOI: 10.1038/353147a0.
  • Prassides, K.; Kroto, H. W.; Taylor, R.; Walton, D. R. M.; David, W. I. F.; Tomkinson, J.; Haddon, R. C.; Rosseinsky, M. J.; Murphy, D. W. Fullerenes and Fullerides in the Solid State: Neutron Scattering Studies. Carbon 1992, 30, 1277–1286. DOI: 10.1016/0008-6223(92)90068-8.
  • Vinit; Ramachandran, C. N. Structure, Stability, and Properties of Boron Encapsulated Complexes of C60, C59B, and C59N. J. Phys. Chem. A 2017, 121, 1708–1714. DOI: 10.1021/acs.jpca.6b10649.
  • Malani, H.; Zhang, D. Theoretical Insight for the Metal Insertion Pathway of Endohedral Alkali Metal Fullerenes. J. Phys. Chem. A 2013, 117, 3521–3528. DOI: 10.1021/jp4007697.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.