53
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Organosilicon elastomers of MWCNTs and nano-sized metals for heating purposes

, , , , , , & show all
Pages 710-720 | Received 07 Feb 2024, Accepted 15 Feb 2024, Published online: 26 Feb 2024

References

  • Basheer, A. A.; Ali, I. Water Photo Splitting for Green Hydrogen Energy by Green Nanoparticles. Int. J. Hydrog. Energy 2019, 44, 11564–11573. DOI: 10.1016/j.ijhydene.2019.03.040.
  • Ali, I.; Burakova, I.; Galunin, E.; Burakov, A.; Mkrtchyan, E.; Melezhik, A.; Kurnosov, D.; Tkachev, A.; Grachev, V. High Speed and High Capacity Removal of Methyl Orange and Malachite Green in Water Using Newly Developed Mesoporous Carbon: Kinetic and Isotherm Studies. ACS Omega. 2019, 4, 19293–19306. DOI: 10.1021/acsomega.9b02669.
  • Ali, I.; Babkin, A. V.; Burakova, I. V.; Burakov, A. E.; Neskoromnaya, E. A.; Tkachev, A. G.; Panglisch, S.; AlMasoud, N.; Alomar, T. S. Fast Removal of Samarium Ions in Water on Highly Efficient Nanocomposite Based Graphene Oxide Modified with Polyhydroquinone: Isotherms, Kinetics, Thermodynamics and Desorption. J. Mol. Liq. 2021, 329, 115584. DOI: 10.1016/j.molliq.2021.115584.
  • Ali, I.; Zenab Hasan, S.; Garcia, H.; Danquah, M. K.; Imanova, G. Recent Advances in Graphene-Based Nano-Membranes for Desalination. Chem. Eng. J. 2024, 483, 149108. DOI: 10.1016/j.cej.2024.149108.
  • Ali, I.; Kon’kova, T.; Rysev, A.; ALOthman, Z. A.; Sillanpää, M.; Georgin, J.; Mbianda, X. Y. Removal of Dichromate-, Molybdate-, and Nitrate Ions from Wastewater Using Modified Natural Montmorillonite. J. Mol. Liq. 2023, 392, 123400. DOI: 10.1016/j.molliq.2023.123400.
  • Mahato, S. K.; Gupta, V. K.; Kumar, A.; Kumar, N.; Trehan, R.; Singh, R. P. Material Selection Considerations for 3D Printing of Electrically Conductive Polymer Composites. A Review. Mater. Today: Proc. 2023, DOI: 10.1016/j.matpr.2023.07.185.
  • Zhang, L.; Li, Z.; Liu, G.; Chen, R.; Guo, S. Enhancement of the Electrical and Thermal Conductivity of Epoxy-Based Composite Films through the Construction of the Multi-Scale Conductive Bridge Structure. Compos. Sci. Technol. 2023, 239, 110074. DOI: 10.1016/j.compscitech.2023.110074.
  • Ali, I.; Garni, T. S.; Shchegolkov, T.; Shchegolkov, A.; Jang, S.-H.; Galunin, E.; Komarov, F.; Borovskikh, P.; Imanova, G. T. Temperature Self-Regulating Flat Electric Heaters Based on MWCNTs-Modified Polymers. Polym. Bull. 2021, 78, 6689–6703. DOI: 10.1007/s00289-020-03483-y.
  • Ali, I.; Shchegolkov, A.; Shchegolkov, A.; Zemtsova, N.; Bogoslovskiy, V.; Shigabaeva, G.; Galunin, E.; Hussain, I.; Almalki, A. S. A.; Alsharif, M. A.; Alahmdi, M. I. Preparation and Application Practice of Temperature Self-Regulating Flexible Polymer Electric Heaters. Polym. Eng. Sci. 2022, 62, 730–742. DOI: 10.1002/pen.25880.
  • Lin, H.; Zhang, C.; Liao, N.; Zhang, M. Microcracked Strain Sensor Based on Carbon Nanotubes/Copper Composite Film with High Performance and Waterproof Property for Underwater Motion Detection. Compos. B. Eng. 2023, 254, 110574. DOI: 10.1016/j.compositesb.2023.110574.
  • Maleki, S. T.; Babamoradi, M. Microwave Absorption Theory and Recent Advances in Microwave Absorbers by Polymer-Based Nanocomposites (Carbons, Oxides, Sulfides, Metals, and Alloys). Inorg. Chem. Commun. 2023, 149, 110407. DOI: 10.1016/j.inoche.2023.110407.
  • Çetin, M. E. Investigation of Carbon Nanotube Reinforcement to Polyurethane Adhesive for Improving Impact Performance of Carbon Fiber Composite Sandwich Panels. Int. J. Adhes. Adhes. 2022, 112, 103002. DOI: 10.1016/j.ijadhadh.2021.103002.
  • Wang, J. Q.; Lou, T. J.; Wang, T.; Cao, W.; Zhao, H.; Qian, P. F.; Bao, Z.-L.; Yuan, X.-T.; Geng, H. Z. Flexible Electrothermal Laminate Films Based on Tannic Acid-Modified Carbon Nanotube/Thermoplastic Polyurethane Composite. Ind. Eng. Chem. Res. 2021, 60, 7844–7852. DOI: 10.1021/acs.iecr.1c00964.
  • Gorrasi, G.; Sarno, M.; Di Bartolomeo, A.; Sannino, D.; Ciambelli, P.; Vittoria, V. Incorporation of Carbon Nanotubes into Polyethylene by High Energy Ball Milling: Morphology and Physical Properties. J. Polym. Sci. B Polym. Phys. 2007, 45, 597–606. DOI: 10.1002/polb.21070.
  • Beg, M. D. H.; Moshiul Alam, A. K. M.; Yunus, R. M.; Mina, M. F. Improvement of Interaction between Pre-Dispersed Multi-Walled Carbon Nanotubes and Unsaturated Polyester Resin. J. Nanopart. Res. 2015, 17, 53. DOI: 10.1007/s11051-014-2846-8.
  • Han, S.; Yang, F.; Li, Q.; Sui, G.; Kalimuldina, G.; Araby, S. Synergetic Effect of α-ZrP Nanosheets and Nitrogen-Based Flame Retardants on Thermoplastic Polyurethane. ACS Appl. Mater. Interfaces. 2023, 15, 17054–17069. DOI: 10.1021/acsami.2c20482.
  • Han, B. S.; Yang, F.; Meng, Q.; Li, J.; Sui, G.; Su, X.; Kuan, H.-C.; Wang, C. H.; Ma, J. Using Renewable Phosphate to Decorate Graphene Nanoplatelets for Flame-Retarding, Mechanically Resilient Epoxy Nanocomposites. Prog. Org. Coat. 2023, 182, 107658. DOI: 10.1016/j.porgcoat.2023.107658.
  • Meng, C. Q.; Song, X.; Han, S.; Abbassi, F.; Zhou, Z.; Wu, B.; Wang, X.; Araby, S. Mechanical and Functional Properties of Polyamide/Graphene Nanocomposite Prepared by Chemicals Free-Approach and Selective Laser Sintering. Compos. Commun. 2022, 36, 101396. DOI: 10.1016/j.coco.2022.101396.
  • Joshi, A. M.; Athawale, A. A. Electrically Conductive Silicone/Organic Polymer Composites. Silicon 2014, 6, 199–206. DOI: 10.1007/s12633-013-9171-1.
  • Wu, Y.; Jiao, Y.; Rong, Z.; Gao, C.; Liu, Y. Reprocessable Thermoset Organosilicon Elastomer with Good Self-Healable and High Stretchable Properties for Flexible Electronic Devices. Polym. Degrad. Stab. 2022, 204, 110110. DOI: 10.1016/j.polymdegradstab.2022.110110.
  • Dash, K.; Nayak, B.; Sahoo, B. P. Electrically Conductive Reduced Graphene Oxide-Based Polyaniline/Polyurethane Blend Nanocomposites with Excellent Dielectric Properties. Mater. Today: Proc. 2023, DOI: 10.1016/j.matpr.2023.02.081.
  • Yang, Y.; Li, X.; Jiang, H.; Ge, M.; Su, X.; Zou, M.; Li, G. Carbon Nanotubes Grafted by Polyurethane Chains with Dopamine-Mediation to Enhance the Mechanical and Damping Properties of Polyurethane Elastomer. Polymer 2023, 280, 126041. DOI: 10.1016/j.polymer.2023.126041.
  • Li, R.; Xia, L.; Lyu, P.; Zhang, J.; Wang, Y.; Deng, B.; Zhang, C.; Liu, X.; Xu, W. High Content Filling, Toughness, and Conductive Performance of Thermoplastic Polyurethane/Carbon Nanotubes Composites Prepared by Constructing the Compact Interface. Compos. Commun. 2021, 28, 100948. DOI: 10.1016/j.coco.2021.100948.
  • Tian, K.; Zhao, G.; Hu, D.; Li, R.; Wei, Q.; Fu, Q.; Deng, H. Magnetic and Electrically Conductive Polyurethane Composites with High Content of Two Functional Fillers Base on “Root” Inspired Microstructure. Compos. B: Eng. 2023, 252, 110512. DOI: 10.1016/j.compositesb.2023.110512.
  • Shan, L.; Tan, C. Y.; Shen, X.; Ramesh, S.; Zarei, M. S.; Kolahchi, R.; Hajmohammad, M. H. The Effects of Nano-Additives on the Mechanical, Impact, Vibration, and Buckling/Post-Buckling Properties of Composites. A Review. J. Mater. Res. Technol. 2023, 24, 7570–7598. DOI: 10.1016/j.jmrt.2023.04.267.
  • Kazakova, M. A.; Golubtsov, G. V.; Selyutin, A. G.; Ishchenko, A. V.; Serkova, A. N.; Gorokhov, G. V.; Misiyuk, P. Y.; Valynets, N. I. Electromagnetic Interference Shielding Performance of Ag/Multi-Walled Carbon Nanotubes-Poly(Methyl Methacrylate) Composites. Mater. Chem. Phys. 2023, 307, 128176. DOI: 10.1016/j.matchemphys.2023.128176.
  • Bârsan, O. A.; Hoffmann, G. G.; van der Ven, L. G. J.; de With, G. B. Single-Walled Carbon Nanotube Networks in Conductive Composite Materials. Faraday Discuss. 2014, 173, 365–377. DOI: 10.1039/c4fd00087k.
  • Zhang, Q.; Wang, Q.; Cui, J.; Zhao, S.; Zhang, G.; Gao, A.; Yan, Y. Structural Design and Preparation of Ti3C2Tx MXene/Polymer Composites for Absorption-Dominated Electromagnetic Interference Shielding. Nanoscale Adv. 2023, 5, 3549–3574. DOI: 10.1039/d3na00130j.
  • Xie, C.; Fang, Y.; Chen, Y.; Liu, J.; Guo, Z. X.; Hao, X.; Chun, L.; Tuo, X. Aramid-Based Highly Conductive Composite Films by Incorporating Graphene for Electromagnetic Interference Shielding and Joule Heating Applications. Compos. Sci. Technol. 2023, 236, 109992. DOI: 10.1016/j.compscitech.2023.109992.
  • Wang, X.; Tang, Y.; Cheng, S.; Gao, Q.; Yuan, Y.; Li, A.; Guan, S. PDMS-Based Conductive Elastomeric Composite with 3D Reduced Graphene Oxide Conductive Network for Flexible Strain Sensor. Compos. A. Appl. Sci. Manuf. 2022, 161, 107113. DOI: 10.1016/j.compositesa.2022.107113.
  • Lysenkov, E.; Klymenko, L. Determining the Effect of Dispersed Aluminum Particles on the Functional Properties of Polymeric Composites Based on Polyvinylidene Fluoride. EEJET. 2021, 3, 59–66. DOI: 10.15587/1729-4061.2021.228731.
  • Parvej, M. S.; Khan, M. I.; Hossain, M. K. Preparation of Nanoparticle-Based Polymer Composites. Nanoparticle-Based Polymer Composites. Woodhead Publishing, 2022; pp 55–94.
  • Melentiev, R.; Yudhanto, A.; Tao, R.; Vuchkov, T.; Lubineau, G. Metallization of Polymers and Composites: State-of-the-Art Approaches. Mater. Des. 2022, 221, 110958. DOI: 10.1016/j.matdes.2022.110958.
  • Kozak, N.; Matzui, L.; Vovchenko, L.; Kosyanchuk, L.; Oliynyk, V.; Antonenko, O.; Nesin, S.; Gagolkina, Z. Influence of Coordination Complexes of Transition Metals on EMI-Shielding Properties and Permeability of Polymer Blend/Carbon Nanotube/Nickel Composites. Compos. Sci. Technol. 2020, 200, 108420. DOI: 10.1016/j.compscitech.2020.108420.
  • Mehvari, S.; Sanchez-Vicente, Y.; González, S.; Lafdi, K. Conductivity Behaviour under Pressure of Copper Micro-Additive/Polyurethane Composites (Experiment and Modelling). Polymers (Basel) 2022, 14, 1287. DOI: 10.3390/polym14071287.
  • Chu, K.; Yun, D. J.; Kim, D.; Park, H.; Park, S. H. Study of Electric Heating Effects on Carbon Nanotube Polymer Composites. Org. Electron. 2014, 15, 2734–2741. DOI: 10.1016/j.orgel.2014.07.043.
  • Senthilkumar, V. Some Approximate Buckling Solutions of Triple-Walled Carbon Nanotube. Vietnam J. Mech. 2022, 44, 212–232.
  • Huang, J. Y.; Chen, S.; Jo, S. H.; Wang, Z.; Han, D. X.; Chen, G.; Dresselhaus, M. S.; Ren, Z. F. Atomic-Scale Imaging of Wall-by-Wall Breakdown and Concurrent Transport Measurements in Multiwall Carbon Nanotubes. Phys. Rev. Lett. 2005, 94, 236802. DOI: 10.1103/PhysRevLett.94.236802.
  • Farajian, A. A.; Yakobson, B. I.; Mizuseki, H.; Kawazoe, Y. Electronic Transport Through Bent Carbon Nanotubes: Nanoelectromechanical Sensors and Switches. Phys. Rev. B 2003, 67, 205423. DOI: 10.1103/PhysRevB.67.205423.
  • Janas, D.; Koziol, K. K. Rapid Electrothermal Response of High-Temperature Carbon Nanotube Film Heaters. Carbon 2013, 59, 457–463. DOI: 10.1016/j.carbon.2013.03.039.
  • Chen, D. R.; Chitranshi, M.; Adusei, P. K.; Schulz, M.; Shanov, V.; Cahay, M. M. Chlorosulfonic Acid Stretched Carbon Nanotube Sheet for Flexible and Low-Voltage Heating Applications. Nanomaterials 2021, 11, 2132. DOI: 10.3390/nano11082132.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.