30
Views
0
CrossRef citations to date
0
Altmetric
Pages 887-895 | Received 27 Nov 2023, Accepted 02 Apr 2024, Published online: 10 Apr 2024

References

  • Dideikin, A. T.; Vul’, A. Y. Graphene Oxide and Derivatives: The Place in Graphene Family. Front. Phys. 2019, 6, 149. DOI: 10.3389/fphy.2018.00149.
  • Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and Characterization of Graphene Oxide Paper. Nature 2007, 448, 457–460. DOI: 10.1038/nature06016.
  • Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M.; Chen, Y. Supercapacitor Devices Based on Graphene Materials. J. Phys. Chem. C 2009, 113, 13103–13107. DOI: 10.1021/jp902214f.
  • Naderi, H. R.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Ganjali, M. R. Decoration of Nitrogen-Doped Reduced Graphene Oxide with Cobalt Tungstate Nanoparticles for Use in High-Performance Supercapacitors. Appl. Surf. Sci. 2017, 423, 1025–1034. DOI: 10.1016/j.apsusc.2017.06.239.
  • Wang, F.; Li, G.; Zhou, Q.; Zheng, J.; Yang, C.; Wang, Q. One-Step Hydrothermal Synthesis of Sandwich-Type NiCo 2 S 4 @Reduced Graphene Oxide Composite as Active Electrode Material for Supercapacitors. Appl. Surf. Sci. 2017, 425, 180–187. DOI: 10.1016/j.apsusc.2017.07.016.
  • Gandhiraman, R. P.; Nordlund, D.; Javier, C.; Koehne, J. E.; Chen, B.; Meyyappan, M. X-Ray Absorption Study of Graphene Oxide and Transition Metal Oxide Nanocomposites. J. Phys. Chem. C Nanomater. Interfaces. 2014, 118, 18706–18712. DOI: 10.1021/jp503941t.
  • Wang, Z.; Li, Y.; Liu, J.; Gui, T.; Ogata, H.; Gong, W.; Vipin, A. K.; Wang, Y.; Hong Melvin, G. J.; Ortiz-Medina, J.; et al. Facile Synthesis of Graphene Sheets Intercalated by Carbon Spheres for High-Performance Supercapacitor Electrodes. Carbon 2020, 167, 11–18. DOI: 10.1016/j.carbon.2020.04.100.
  • Cataldo, F.; Angelini, G.; Révay, Z.; Osawa, E.; Braun, T. Wigner Energy of Nanodiamond Bombarded with Neutrons or Irradiated with γ Radiation. Fuller. Nanotub. Carbon Nanostructures 2014, 22, 861–865. DOI: 10.1080/1536383X.2013.858131.
  • Mochalin, V. N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The Properties and Applications of Nanodiamonds. Nat. Nanotechnol. 2012, 7, 11–23. DOI: 10.1038/nnano.2011.209.
  • Yudina, E. B.; Romanov, P. A.; Chizhikova, A. S.; Aruev, N. N. Pyrolysis Mass-Spectrometry Study of Detonation Nanodiamonds Surface Chemistry. Fuller. Nanotub. Carbon Nanostructures 2023, 31, 68–74. DOI: 10.1080/1536383X.2022.2120477.
  • Vozniakovskii, A.; Kidalov, S.; Voznyakovskii, A.; Podlozhnyuk, N. Hardness and Thermal Conductivity of a Composite Based on Aluminum Modified with a Hybrid Material Detonation Nanodiamond/Few-Layer Graphene. Fuller. Nanotub. Carbon Nanostructures 2022, 30, 205–210. DOI: 10.1080/1536383X.2021.2014455.
  • Sun, Y.; Wu, Q.; Xu, Y.; Bai, H.; Li, C.; Shi, G. Highly Conductive and Flexible Mesoporous Graphitic Films Prepared by Graphitizing the Composites of Graphene Oxide and Nanodiamond. J. Mater. Chem. 2011, 21, 7154. DOI: 10.1039/c0jm04434b.
  • Costinas, C.; Salagean, C. A.; Cotet, L. C.; Baia, M.; Todea, M.; Magyari, K.; Baia, L. Insights into the Stability of Graphene Oxide Aqueous Dispersions. Nanomaterials 2022, 12, 4489. DOI: 10.3390/nano12244489.
  • Wang, Q.; Plylahan, N.; Shelke, M. V.; Devarapalli, R. R.; Li, M.; Subramanian, P.; Djenizian, T.; Boukherroub, R.; Szunerits, S. Nanodiamond Particles/Reduced Graphene Oxide Composites as Efficient Supercapacitor Electrodes. Carbon 2014, 68, 175–184. DOI: 10.1016/j.carbon.2013.10.077.
  • Rabchinskii M. K., Trofimuk A. D., Shvidchenko A. V., Baidakova M. V., Pavlov S. I., Kirilenko D. A., Kulvelis Yu. V., Gudkov M. V., Shiyanova K. A., Koval V. S., Peters G. S., Lebedev V. T., Melnikov V. P., Dideikin A. T., Brunkov P. N., Influence of the Sign of the Zeta Potential of Nanodiamond Particles on the Morphology of Graphene-Detonation Nanodiamond Composites in the Form of Suspensions and Aerogels, Tech. Phys. 2022, 67, 1611. DOI: 10.21883/TP.2022.12.55197.208-22.
  • Vul’, A.; Shenderova, O. eds., Detonation Nanodiamonds: Science and Applications. Jenny Stanford Publishing: New York, 2014. DOI: 10.1201/b15541.
  • Aleksenskiy, A. E.; Eydelman, E. D.; Vul’, A. Y. Deagglomeration of Detonation Nanodiamonds. Nanosci. Nanotechnol. Lett. 2011, 3, 68–74. DOI: 10.1166/nnl.2011.1122.
  • Williams, O. A.; Hees, J.; Dieker, C.; Jäger, W.; Kirste, L.; Nebel, C. E. Size-Dependent Reactivity of Diamond Nanoparticles. ACS Nano. 2010, 4, 4824–4830. DOI: 10.1021/nn100748k.
  • Ginés, L.; Mandal, S.; Ashek-I-Ahmed, A.-I.-A.; Cheng, C.-L.; Sow, M.; Williams, O. A. Positive Zeta Potential of Nanodiamonds. Nanoscale 2017, 9, 12549–12555. DOI: 10.1039/C7NR03200E.
  • Si, Y.; Samulski, E. T. Synthesis of Water Soluble Graphene. Nano Lett. 2008, 8, 1679–1682. DOI: 10.1021/nl080604h.
  • Korobov, M. V.; Batuk, M. M.; Avramenko, N. V.; Ivanova, N. I.; Rozhkova, N. N.; Ōsawa, E. Do Primary Particles of Detonation Nanodiamond Form a Secondary Structure? Fuller. Nanotub. Carbon Nanostructures 2010, 19, 58–62. DOI: 10.1080/1536383X.2010.490127.
  • Tomchuk, O. V.; Avdeev, M. V.; Dideikin, A. T.; Vul’, A.; Aleksenskii, A. E.; Kirilenko, D. A.; Ivankov, O. I.; Soloviov, D. V.; Kuklin, A. I.; Garamus, V. M.; et al. Revealing the Structure of Composite Nanodiamond–Graphene Oxide Aqueous Dispersions by Small-Angle Scattering. Diam. Relat. Mater 2020, 103, 107670. DOI: 10.1016/j.diamond.2019.107670.
  • Kuschnerus, I. C.; Wen, H.; Zeng, X.; Khine, Y. Y.; Ruan, J.; Su, C.-J.; Jeng, U.-S.; Girard, H. A.; Arnault, J.-C.; Ōsawa, E.; et al. Fabrication Process Independent and Robust Aggregation of Detonation Nanodiamonds in Aqueous Media. Diam. Relat. Mater 2023, 139, 110199. DOI: 10.1016/j.diamond.2023.110199.
  • Kuschnerus, I. C.; Wen, H.; Ruan, J.; Zeng, X.; Su, C.-J.; Jeng, U.-S.; Opletal, G.; Barnard, A. S.; Liu, M.; Nishikawa, M.; Chang, S. L. Y. Complex Dispersion of Detonation Nanodiamond Revealed by Machine Learning Assisted Cryo-TEM and Coarse-Grained Molecular Dynamics Simulations, ACS. ACS Nanosci. Au 2023, 3, 211–221. DOI: 10.1021/acsnanoscienceau.2c00055.
  • Dideikin, A. T.; Aleksenskii, A. E.; Baidakova, M. V.; Brunkov, P. N.; Brzhezinskaya, M.; Davydov, V.; Levitskii, V. S.; Kidalov, S. V.; Kukushkina, Y.; Kirilenko, D. A.; et al. Rehybridization of Carbon on Facets of Detonation Diamond Nanocrystals and Forming Hydrosols of Individual Particles. Carbon 2017, 122, 737–745. DOI: 10.1016/j.carbon.2017.07.013.
  • Zeiger, M.; Jäckel, N.; Weingarth, D.; Presser, V. Vacuum or Flowing Argon: What is the Best Synthesis Atmosphere for Nanodiamond-Derived Carbon Onions for Supercapacitor Electrodes? Carbon 2015, 94, 507–517. DOI: 10.1016/j.carbon.2015.07.028.
  • Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; et al. Carbon-Based Supercapacitors Produced by Activation of Graphene. Science 2011, 332, 1537–1541. DOI: 10.1126/science.1200770.
  • Firdaus, R. M.; Desforges, A.; Emo, M.; Mohamed, A. R.; Vigolo, B. Physical and Chemical Activation of Graphene-Derived Porous Nanomaterials for Post-Combustion Carbon Dioxide Capture. Nanomaterials 2021, 11, 2419. DOI: 10.3390/nano11092419.
  • Mykhailiv, O.; Zubyk, H.; Plonska-Brzezinska, M. E. Carbon Nano-Onions: Unique Carbon Nanostructures with Fascinating Properties and Their Potential Applications. Inorganica Chim. Acta 2017, 468, 49–66. DOI: 10.1016/j.ica.2017.07.021.
  • Jäckel, N.; Weingarth, D.; Zeiger, M.; Aslan, M.; Grobelsek, I.; Presser, V. Comparison of Carbon Onions and Carbon Blacks as Conductive Additives for Carbon Supercapacitors in Organic Electrolytes. J. Power Sources 2014, 272, 1122–1133. DOI: 10.1016/j.jpowsour.2014.08.090.
  • Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A.; Ruoff, R. S. Chemical Analysis of Graphene Oxide Films after Heat and Chemical Treatments by X-Ray Photoelectron and Micro-Raman Spectroscopy. Carbon 2009, 47, 145–152. DOI: 10.1016/j.carbon.2008.09.045.
  • Tuinstra, F.; Koenig, J. L. Raman Spectrum of Graphite. J. Chem. Phys 1970, 53, 1126–1130. DOI: 10.1063/1.1674108.
  • López-Díaz, D.; López Holgado, M.; García-Fierro, J. L.; Velázquez, M. M. Evolution of the Raman Spectrum with the Chemical Composition of Graphene Oxide. J. Phys. Chem. C 2017, 121, 20489–20497. DOI: 10.1021/acs.jpcc.7b06236.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.