245
Views
39
CrossRef citations to date
0
Altmetric
EXPERIMENTAL WORK

Movement and Alignment of Microtubules in Electric Fields and Electric-Dipole-Moment Estimates

, , , &
Pages 319-330 | Published online: 07 Jul 2009

References

  • Unger, E.; Böhm, K.J.; Vater, W. Structural diversity and dynamics of microtubules and polymorphic tubulin assemblies. Electron Microsc. Rev. 1990, 3, 355–395. [PUBMED], [INFOTRIEVE], [CSA]
  • Kirsch, R.; Mertig, M.; Pompe, W.; Wahl, R.; Sadowski, G.; Böhm, K.J.; Unger, E. Three-dimensional metallization of microtubules. Thin Solid Films 1997, 305, 248–253. [CSA], [CROSSREF]
  • Fritzsche, W.; Böhm, K.J.; Unger, E.; Köhler, M. Making electrical contact to single molecules. Nanotechnology 1998, 9, 177–183. [CSA], [CROSSREF]
  • Hess, H.; Clemmens, J.; Qin, D.; Howard, J.; Vogel, V. Light-controlled molecular shuttles made from motor proteins carrying cargo on engineered surfaces. Nano Letters 2001, 1, 235–239. [CSA], [CROSSREF]
  • Böhm, K.J.; Stracke, R.; Mühlig, P.; Unger, E. Motorprotein-powered unidirectional transport of micrometer-sized cargoes across isopolar microtubule arrays. Nanotechnology 2001, 12, 238–244. [CSA], [CROSSREF]
  • Behrens S.; Rahn K.; Habicht W.; Böhm, K.J.; Rösner, H.; Dinjus, E. Unger E. Nanoscale particle arrays induced by highly ordered protein assemblies. Adv. Materials 2002, 14, 1621–1625. [CSA], [CROSSREF]
  • Behrens, S.; Wu, J.; Habicht, W.; Unger, E. Silver nanoparticle and nanowire formation by microtubule templates. Chemistry of Materials 2004, 16, 3085–3090. [CSA], [CROSSREF]
  • Chana, D.; Mavromatos, N.E.; Michette, A.; Pfauntsch, S.; Powell, A.K.; Unger, E. Quantum biotubes and information transfer. Leverhulme Trust (UK) Report F/07 040/L, 2005. [CSA]
  • Stracke, R.; Böhm, K.J.; Burgold, J.; Schacht, H.-J.; Unger, E. Physical and technical parameters determining the functioning of a kinesin-based cell-free motor system. Nanotechnology 2000, 11, 52–56. [CSA], [CROSSREF]
  • Detrich, H.W. 3rd; Overton, S.A. Heterogeneity and structure of brain tubulins from cold-adapted Antarctic fishes. Comparison to brain tubulins from a temperate fish and a mammal. J. Biol Chem. 1986, 261, 10922–10930. [PUBMED], [INFOTRIEVE], [CSA]
  • Linhartová, I.; Dráberová, E.; Viklický, V.; Dráber, P. Distribution of non-class-III beta-tubulin isoforms in neuronal and non-neuronal cells. FEBS Letters 1993, 320, 79–82. [CSA], [CROSSREF]
  • Stracke, R.; Böhm, K.J.; Wollweber, L.; Tuszynski, J.A.; Unger, E. Analysis of the migration behaviour of single microtubules in electric fields. Biochem Biophys Res Commun. 2002, 293, 602–609. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Ponstingl, H.; Krauhs, E.; Little, M.; Kempf, T. Complete amino acid sequence of alpha-tubulin from porcine brain. Proc Natl Acad Sci USA. 1981, 78, 2757–2761. [PUBMED], [INFOTRIEVE], [CSA]
  • Meggs, W.J. Electric fields determine the spatial organization of microtubules and actin filaments. Med Hypotheses 1988, 26, 165–170. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Mithieux, G.; Chauvin, F.; Roux, B.; Rousset, B. Association states of tubulin in the presence and absence of microtubule-associated proteins. Analysis by electric birefringence. Biophys Chem. 1985, 22, 307–316. [CSA]
  • Tuszynski, J.A.; Hameroff, S.H.; Sataric, M.V.; Trpisova, B.T.; Nip, M.L.A. Ferroelectric behaviour in microtubule dipole lattices: implications for information processing, signalling and assembly/disassembly. J. Theor Biol. 1995, 174, 371–380. [CSA], [CROSSREF]
  • Bakewell, D.J.G. Dielectrophoresis of colloids and polyelectrolytes. Ph.D. dissertation, University of Glasgow, Department of Statistics, Scotland, UK, 2002.
  • Miller, R.D.; Jones, T.B. Electro-orientation of ellipsoidal erythrocytes. Theory and experiment. Biophys J. 1993, 64, 1588–1595. [CSA]
  • Pohl, H.A.; Pollock, J.K. Biological dielectrophoresis: The behavior of biologically significant materials in nonuniform electric fields. In Modern Bioelectrochemistry; Gutmann, F.; Keyser, H., Eds.; Plenum Press: New York and London, 1986, 329–376.
  • Shelanski, M.L.; Gaskin, F.; Cantor, C.R. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci USA. 1973, 70, 765–768. [PUBMED], [INFOTRIEVE], [CSA]
  • Weingarten, M.D.; Lockwood, A.H.; Hwo, S.Y.; Kirschner, M.W. A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA. 1975, 72, 1858–1862. [PUBMED], [INFOTRIEVE], [CSA]
  • Weiss, D.G.; Maile, W. Principles, practice, and applications of video-enhanced contrast microscopy. In Electronic Light Microscopy; Shotton, D.M., Ed.; Wiley-Liss: New York, 1992, 105–140.
  • Komagata, S. On the measurement of cataphoretic velocity. Part 1: microscopic method. Res. Electrotechn. Lab. Japan 1933, 348, 5. [CSA]
  • van den Heuvel, M.G.; Butcher, C.T.; Lemay, S.G.; Diez, S.; Dekker, C. Electrical docking of microtubules for kinesin-driven motility in nanostructures. Nano Lett. 2005, 5, 235–241. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Jia, L.; Moorjani, S.G.; Jackson, T.N.; Hancock, W.O. Microscale transport and sorting by kinesin molecular motors. Biomed Microdevices. 2004, 6, 67–74. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Brown, J.A. A study of the interactions between electromagnetic fields and microtubules: Ferroelectric effects, signal transduction and electronic conduction. Ph.D. dissertation, University of Alberta: Edmonton, 1999.
  • Mershin A.; Kolomenski, A.A.; Schuessler, H.A.; Nanopoulos, D.V. Tubulin dipole moment, dielectric constant and quantum behavior: computer simulations, experimental results and suggestions. Biosystems 2004, 77, 73–78. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Nogales, E.; Wolf, S.; Downing, K.H. Structure of the tubulin dimer by electron crystallography. Nature 1998, 291, 199–203. [CSA], [CROSSREF]
  • Bakewell, D.J.; Morgan, H. Measuring the frequency dependent polarizability of colloidal particles from dielectrophoretic collection data. IEEE Trans. Dielect. and Elec. Ins. 2001, 8, 566–571. [CSA], [CROSSREF]
  • Howard, J. Mechanics of Motor Proteins and the Cytoskeleton, Sunderland, Massachusetts: 2001; 107.
  • Kua, C.H.; Lam, Y.C.; Yang, C.; Youcef-Toumi, K. Review of bio-particle manipulation using dielectrophoresis. Innovation in Manufacturing Systems and Technology, 2005. Available at: http://dspace.mit.edu/bitstream/1721.1/7464/1/IMST026.pdf, , [CSA]
  • Mavromatos, N.E.; Nanopoulos D.V. On quantum mechanical aspects of microtubules. Int. J. Mod. Physics B 1998, 12, 517–527. [CSA], [CROSSREF]
  • Mavromatos, N.E.; Nanopoulos, D.V.; Samaras, I.; Zioutas, K. Ferroelectrics and their possible involvement in Biology. Adv. Str. Biol. 1998, 5, 127–137. [CSA]
  • Mershin, A.; Sanabria, H.; Miller, J.H.; Nawarathna, D.; Skoulakis, E.; Mavromatos, N.E.; Kolomenskii, A.; Schuessler, H.A.; Luduena, R.F.; Nanopoulos, D.V. Towards experimental tests of quantum effects in cytoskeletal proteins, arXive: physics/0505080. In On the Emerging Science of Consciousness; Tuszynski, J.A., Ed.; Springer-Verlag: Berlin, 2005; 1–66.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.