2,170
Views
122
CrossRef citations to date
0
Altmetric
Original

Magnetic Field Therapy: A Review

Pages 1-23 | Published online: 07 Jul 2009

References

  • Adey, W. R. (1993). Electromagnetic technology and the future of bioelectromagnetics. In: Blank, M., ed. Electricity and Magnetism in Biology and Medicine. New York: Plenum Press, pp. 101–108.
  • Adey, W. R. (2004). Potential therapeutic application of nonthermal electromagnetic fields: Ensemble organization of cells in tissue as a factor in biological field sensing. In: Rosch, P. J., Markov, M. S., eds. Bioelectromagnetic Medicine. New York: Marcel Dekker, pp. 1–12.
  • Alvarez, O. M., Mertz, P. M., Smerbeck, R. V., Short, N. (1983). The healing of superficial skin wounds is stimulated by external electrical current. J. Invest. Dermatol. 81:144–148.
  • Barclay, V., Collier, R.J., Jones, A. (1983). Treatment of various hand injuries by pulsed electromagnetic energy (Diapulse). Physiother 69:186–188.
  • Bassett, C. A. L. (1978). Pulsing electromagnetic fields: a new approach to surgical problems. In: Buchwald, H., Varco, R. L., eds. Metabolic Surgery. New York: Grune and Stratton, pp. 255.
  • Bassett, C. A. L. (1989). Fundamental and practical aspects of therapeutical uses of pulsed electromagnetic fields (PEMFs). Crit. Rev. Biomed. Eng. 17:451–529.
  • Bassett, C. A. L. (1992). Bioelectromagnetics in the service of medicine. Bioelectromagnetics 13:7–18.
  • Bassett, C. A. L. (1994). Therapeutic uses of electric and magnetic fields in orthopedics. In: Karpenter, D., Ayrapetyan, S., eds. Biological Effects of Electric and Magnetic Fields. San Diego: Academic Press, pp. 13–18.
  • Bassett, C. A. L., Pilla, A. A., Pawluk, R. (1977). A non-surgical salvage of surgically-resistant pseudoarthroses and non-unions by pulsing electromagnetic fields. Clin. Orthop. 124:117–131.
  • Bental, R. H. C. (1990). Electromagnetic energy: a historical therapeutic perspective. In: O'Connor, M. E., Bental, R. H. C., Monaham, J. C., eds. Emerging Electromagnetic Medicine. New York: Springer Verlag, pp. 1–17.
  • Blank, M. (1988). Electrical double layers in membrane transport and nerve excitation. In: Markov, M., Blank, M., eds. Electromagnetic Fields and Biomembranes. New York: Plenum Press, pp. 19–26.
  • Blank, M., Goodman, R. (1997). Do electromagnetic fields interact directly with DNA? Bioelectromagnetics 18:111–115.
  • Blank, M., Goodman, R. (2004a). Initial interactions in electromagnetic field induced biosynthesis. J. Cell. Physiol. 199:359–363.
  • Blank, M., Goodman, R. (2004b). A biological guide for electromagnetic safety: the stress response. Bioelectromagnetics 25(8):642–646.
  • Bourguignon, G. L., Bourguignon, L. Y. W. (1989). Electrical stimulation of protein and DNA synthesis. Med Rehab. 70:624–627.
  • Brown, C. S., Parker, N., Ling, F. W., Wan, J. Y. (2000). Effect of magnets on chronic pelvic pain. Obstet. Gynecol. 187:1581–1587.
  • Brown, C. S., Ling, F. W., Wan, J. Y., Pilla, A. A. (2002). Efficacy of static magnetic field therapy in chronic pelvic pain: a double-blind pilot study. Am. J. Obstet. Gynecol. 187:1581–1587.
  • Buemi, M., Marino, D., Di Pasquale, G., Floccari, F., Senatore, M., Aloisi, C., Grasso, F., Mondio, G., Perillo, P., Frisina, N., Corica, F. (2001). Cell proliferation/cell death balance in renal cell cultures after exposure to a static magnetic field. Nephron 87:269–273.
  • Chionna, A., Dwikat, M., Panzarini, E., Tenuzzo, B., Carla, E. C., Verri, T., Pagliara, P., Abbro, L., Dini, L. (2003). Cell shape and plasma membrane alterations after static magnetic fields exposure. Eur. J. Histochem. 7:299–308.
  • Chionna, A., Tenuzzo, B., Panzarini, E., Dwikat, M. B., Abbro, L., Dini, L. (2005). Time dependent modifications of Hep G2 cells during exposure to static magnetic fields. Bioelectromagnetics 26:275–286.
  • Cleary, S. F. (1994). Biophysical aspects of electromagnetic field effects on mammalian cells. In: Frey, A., ed. On the Nature of Electromagnetic Field Interactions with Biological Systems. Austin TX: R.G. Landes Co., pp. 28–42.
  • Colbert, A. P., Markov, M. S., Banerji, M., Pilla, A. A. (1999). Magnetic mattress pad use in patients with fibromialgya: a randomized double blind trial. J. Back Musculoskeletal Rehab. 13:19–31.
  • Coots, A., Shi, R., Rosen, A. D. (2004). Effect of a 0.5-T static magnetic field on conduction in guinea pig spinal cord. J. Neurol. Sci. 222:55–57.
  • Danielyan, A. A., Mirakyan, M. M., Grigoryan, G. Y., Ayrapetyan, S. N. (1999). The static magnetic field effects on ouabain H3 binding by cancer tissue. Physiol. Chem. Phys. Med. NMR 31:139–144.
  • da Motta, M. A., Muniz, J. B., Schulter, A., Da Motta, M. (2004). Static magnetic fields enhancement of Saccharomyces cerevisae ethanolic fermentation. Biotechnol. Prog. 20:393–396.
  • Darendeliler, M. A., Darendeliler, A., Sinclair, P. M. (1997). Effects of static magnetic and pulsed electromagnetic fields on bone healing. Int. J. Adult Orthodon. Orthognath. Surg. 12:43–53.
  • Dini, L., Abbro, L. (2005). Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron 26:195–217.
  • Deno, D. W., Carpenter, D. O. (1994). Sources and characteristics of electric and magnetic fields in the environment. In: Carpenter, D. O., Ayrapetyan, S., eds. Biological Effects of Electric and Magnetic Fields. San Diego: Academic Press, Vol. 1, pp. 7–52.
  • Detlavs, I. (ed.) (1987). Electromagnetic Therapy in Traumas and Diseases of the Support-motor Apparatus. Riga RMI, p. 198.
  • Detlavs, I., Dombrovska, I., Klavinsh, I., Turauska, A., Shkirmante, B., Slutskii, L. (1994). Experimental study of the effect of electromagnetic fields in early stage of wound healing. Bioelectrochemi. Bioenerg. 35:13–117.
  • Devjatkov, N. D., Betskii, O. V. (1994). Biological Aspects of Low Intensity Millimeter Waves. Moscow: Moscow University Press, p. 336.
  • Dobson, J., St Pierre, T., Wieser, H. G., Fuller, M. (2000). Changes in paroxysmal brainwave patterns of epileptics by weak-field magnetic stimulation. Bioelectromagnetics 21:94–99.
  • Dunn, M. G., Doillon, C. H., Berg, R. A. (1988). Wound healing using a collagen matrix: effect of DC electrical stimulation. J. Biomed. Mater. Res. 22A:191–206.
  • Eccles, N. J. (2005). A critical review of randomized controlled trials of static magnets for pain relief. J. Altern. Compliment. Med. 11:495–509.
  • Engström, S., Markov, M. S., McLean, M. J., Holcomb, R. R., Markov, J. M. (2002). Effects of non-uniform static magnetic fields on the rate of myosin phosphorylation. Bioelectromagnetics 23:475–479.
  • Fanelli, C., Coppola, S., Barone, R., Colussi, C., Gualandi, C., Volpe, P., Ghibelli, L. (1999). Magnetic fields increase cell survival by inhibiting apoptosis via modulation of Ca2p influx. FASEB J. 13:95–102.
  • Flipo, D., Fournier, M., Benquet, C., Roux, P., Le Boulaire, C., Pinsky, C., LaBella, F. S., Krzystyniak, K. (1998). Increased apoptosis, changes in intracellular Ca2p, and functional alterations in lymphocytes and macrophages after in vitro exposure to static magnetic field. J. Toxicol. Environ. Health A 54:63–76.
  • Fuller, M., Dobson, J., Wieser, H. G., Moser, S. (1995). On the sensitivity of the human brain to magnetic fields: evocation of epileptiform activity. Brain Res. Bull. 36:155–159.
  • Gilbert, W. (1991). 1600. DE MAGNETE. (Written in Latin, Translated and published by Dover Publication, p. 368.).
  • Ginsberg, A. J. (1934). Ultrashort radio waves as a therapeutic agent. Med. Record. 19:1–8.
  • Gray, J. R., Frith, C. H., Parker, J. D. (2000). In vivo enhancement of chemotherapy with static electric or magnetic fields. Bioelectromagnetics 21:575–583.
  • Harlow, T., Greaves, C., White, A., Brown, L., Hart, A., Ernst, E. (2004). Randomised controlled trial of magnetic bracelets for relieving pain in osteoarthritis of the hip and knee. British Medical Journal 329:1450–1454.
  • Hinman, M. R. (2002). Comparative effect of positive and negative static magnetic fields on heart rate and blood pressure in healthy adults. Clin Rehabil 16:669–674.
  • Hirai, T., Yoneda, Y. (2004). Functional alterations in immature cultured rat hippocampal neurons after sustained exposure to static magnetic fields. J. Neurosci. Res. 75:230–240.
  • Hirai, T., Taniura, H., Goto, Y., Tamaki, K., Oikawa, H., Kambe, Y., Ogura, M., Ohno, Y., Takarada, T., Yoneda, Y. (2005). Counteraction by repetitive daily exposure to static magnetism against sustained blockade of N-methyl-D-aspartate receptor channels in cultured rat hippocampal neurons. J. Neurosci. Res. 80:491–500.
  • Holcomb, R. R., Worthington, W. B., McCullough, B. A., McLean, M. J. (2000). Static magnetic field therapy for pain in the abdomen and genitals. Pediatr. Neurol. 23:261–264.
  • Illis, L. S. (1982). The effect of repetitive stimulation in recovery from damage to the central nervous system. Int. Rehab. Med. 4:178–182.
  • Jerabek, J. (1994). An overview of present research into magnetotherapy. In: Coghill, R., ed. Proceedings of First World Congress on Magnetotherapy. Lower Race, Pontypool: England, pp. 5–78.
  • Karba, R., Vodovnik, L., Jercinovic, A., Trontelj, K., Benko, H., Savrin, R. Promotion of wound healing by electrical stimulation. Biomedizinische Technik 40:20–24.
  • Katz, E., Lioubashevski, O., Willner, I. (2004). Magnetic field effects on cytochrome c-mediated bioelectrocatalytic transformations. J. Am. Chem. Soc. 126:11088–11092.
  • Katz, E., Lioubashevski, O., Willner, I. (2005). Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems: enhanced performance of befoul cells. J. Am. Chem. Soc. 127:3979–3988.
  • Kirschvink, J. L., Kobayashi-Kirschvink, A., Diaz-Ricci, J., Kirschvink, S. J. (1992). Magnetite in human tissues: A mechanism for the biological effects of weak ELF magnetic fields. Bioelectromagnetics suppl. 1:101–114.
  • Kobluk, C. N., Johnson, G. R., Lauper, L. (1994). A scintigraphy investigation of magnetic field therapy on the equine third metacarpus. Vet. Comp. Orthopedics. Traumatol. 7:3–7.
  • Lawrence, R., Rosch, P. J., Plowden, J. (1998). Magnet Therapy: The Pain Cure Alternative. Rocklin CA: Prima Publishing, pp. 241.
  • Leszczynski, D., K. R., Joenvaara, S., Reivinen, J. (2003). New approach in EMF research –proteomics and transcriptomics. Proceedings VIth International Congress of EBEA, Budapest, 13-15 November, 5.
  • Liboff, A. R., Cherng, S., Jenrow, K. A., Bull, A. (2003). Calmodulin dependent cyclic nucleotide phosphodiesterase activity is altered by 20 microT magnetostatic fields. Bioelectromagnetics 24:32–38.
  • Luben, R. A. (1994). Membrane signal transduction as a site of electromagnetic action in bone and other tissues. In: Fray, A., ed. On the Nature of Electromagnetic Field Interactions with Biological Systems. Austin TX: RG Landes, pp. 83–98.
  • Man, D., Man, B., Plosker, H. (1999). The influence of permanent magnetic field therapy on wound healing in suction lipectomy patients: a double-blind study. Plast. Reconstr. Surg. 104:2261–2268.
  • Markov, M. S. (1987). Biophysical aspects of the application of electromagnetic fields in orthopedics and traumatology. In: Detlav, I., ed. Electromagnetic Therapy in Traumas and Diseases of the Support-Motor Apparatus. Riga: Zinatie, pp. 76–86.
  • Markov, M. S. (1990). Influence of radiation on biological systems. In: Allen, M. J., ed. Charge and Field Effects in Biosystems II. New York: Plenum Press, pp. 241–250.
  • Markov, M. (1994). Biological effects of extremely low frequency magnetic fields. In: Ueno, S., ed. Biomagnetic Stimulation. New York: Plenum Press, pp. 91–103.
  • Markov, M. S. (1995). Electric current and electromagnetic field effects on soft tissues. Wounds 7:94–110.
  • Markov, M. S. (2004a). Myosin light chain phosphorylation modification depending on magnetic fields I. Theoret. Electromag. Biol. Med. 23:55–74.
  • Markov, M. S. (2004b). Myosin light chain phosphorylation modification depending on magnetic fields II. Exper. Electromag. Biol. Med. 23:125–140.
  • Markov, M. S. (2004). Magnetic and electromagnetic field therapy: basic principles of application for pain relief. In: Rosch, P. J., Markov, M. S., eds. Bioelectromagnetic Medicine. New York: Marcel Dekker, pp. 251–264.
  • Markov, M. S. (2006). Thermal vs. non-thermal mechanisms of interactions between electromagnetic fields and biological systems. In: Ayrapetyan, S., Markov, M., eds. Bioelectromagnetics: Current Concepts. Dordrecht, The Netherlands: Springer, pp. 1–15.
  • Markov, M. S., Colbert, A. P. (2000). Magnetic and electromagnetic field therapy. J. Back Musculoskeletal Rehab. 14:1–13.
  • Markov, M. S., Muehsam, D. J., Pilla, A. A. (1994). Modulation of cell-free myosin phosphorylation with pulsed radiofrequency electromagnetic fields. In: Allen, M. J., Cleary, S. F., Sowers, A. E., eds. Charge and Field Effects in Biosystems-4. New Jersey: World Scientific, p. 274.
  • Markov, M. S., Nindl, G., Hazlewood, C., Cuppen, J. (2006). Interactions between electromagnetic fields and immune system: possible mechanisms for pain control. In: Ayrapetyan, S., Markov, M. S., eds. Bioelectromagnetics: Current Concepts. Dordrecht, The Netherlands: Springer, pp. 213–226.
  • Markov, M. S., Todorov, N. G. (1984). Electromagnetic field stimulation of some physiological processes. Studia Biophysica 99:151–156.
  • Markov, M. S., Todorov, S. I., Ratcheva, M. R. (1975). Biomagnetic effects of the constant magnetic field action on water and physiological activity. In: Jensen, K., Vassileva, Yu., eds. Physical Bases of Biological Information Transfer. New York: Plenum Press, pp. 441–445.
  • Markov, M. S., Pilla, A. A. (1995). Electromagnetic field stimulation of soft tissues. Wounds 7:143–151.
  • McLean, M. J., Holcomb, R. R., Wamil, A. W., Pickett, J. D., Cavopol, A. V. (1995). Blockade of sensory neuron action potentials by a static magnetic field in the 10 mT range. Bioelectromagnetics 16:20–32.
  • McLean, M. J., Engströ, M. S., Holcomb, R. R., Sanchez, D. (2003). A static magnetic field modulates severity of audiogenic seizures and anticonvulsant effects of phenytoin in DBA/2 mice. Epilepsy Res. 55:105–116.
  • Morris, C., Skalak, T. (2005). Static magnetic fields alter arteriolar tone in vivo. Bioelectromagnetics 26:1–9.
  • Motta, M. A., Montenegro, E. J., Stamford, T. L., Silva, A. R., Silva, F. R. (2001). Changes in Saccharomyces cerevisae development induced by magnetic fields. Biotechnol. Prog. 17:970–973.
  • Nordenstrom, B. E. (1983). Biologically Closed Electrical Circuits: Clinical, Experimental and Theoretical Evidence for an Additional Circulatory System. Stockholm: Nordic Medical Publications, p. 358.
  • Ohata, R., Tomita, N., Ikada, Y. (2004). Effect of a static magnetic field on ion transport in a cellulose membrane. J. Colloid Interface Sci. 270:413–416.
  • Ohkubo, C., Xu, S. (1997). Acute effects of static magnetic fields on cutaneous microcirculation in rabbits. In Vivo 11:221–225.
  • Okano, H., Ohkubo, C. (2001). Modulatory effects of static magnetic fields on blood pressure in rabbits. Bioelectromagnetics 22:408–418.
  • Okano, H., Ohkubo, C. (2003a). Anti-pressor effects of whole-body exposure to static magnetic field on pharmacologically induced hypertension in conscious rabbits. Bioelectromagnetics 24:139–147.
  • Okano, H., Ohkubo, C. (2003b). Effects of static magnetic fields on plasma levels of angiotensin II and aldosterone associated with arterial blood pressure in genetically hypertensive rats. Bioelectromagnetics 24:403–412.
  • Okano, H., Masuda, H., Ohkubo, C. (2005a). Effects of 25 mT static magnetic field on blood pressure in reserpine-induced hypotensive Wistar–Kyoto rats. Bioelectromagnetics 26:36–48.
  • Okano, H., Masuda, H., Ohkubo, C. (2005b). Decreased plasma levels of nitric oxide metabolites, angiotensin II and aldosterone in spontaneously hypertensive rats exposed to 5 mT static magnetic field. Bioelectromagnetics 26:161–172.
  • Pacini, S., Vannelli, G. B., Barni, T., Ruggiero, M., Sardi, I., Pacini, P., Gulisano, M. (1999). Effect of 0.2 T static magnetic field on human neurons: remodeling and inhibition of signal transduction without genome instability. Neurosci. Lett. 267:185–188.
  • Pacini, S., Gulisano, M., Peruzzi, B., Sgambati, E., Gheri, G., Gheri Bryk, S., Vannucchi, S., Polli, G., Ruggiero, M. (2003). Effects of 0.2 T static magnetic field on human skin fibroblasts. Cancer Detect. Prev. 27(3):27–332.
  • Pagliara, P., Lanubile, R., Dwikat, M., Abbro, L., Dini, L. (2005). Differentiation of monocytic U937 cells under static magnetic field exposure. Eur. J. Histochem. 49:67–74.
  • Pakhomov, A. G., Akyel, Y., Pakhomova, O. N., Suck, B. E., Murphy, M. R. (1998). Current state and implications of research on biological effects of millimeter waves: a review of literature. Bioelectromagnetics 18:393–418.
  • Panagos, A., Jensen, M., Cardenas, D. D. (2004). Treatment of myofascial shoulder pain in the spinal cord injured population using static magnetic fields: a case series. J. Spinal Cord Med. 27:138–142.
  • Phillips, J. L. (1986). Transferrin receptors and natural killer cell lysis: a study using Colo 205 cells exposed to 60 Hz electromagnetic fields. Immunology Lett. 13:295–299.
  • Pilla, A. A. (1974). Electrochemical information transfer at living cell membranes. Ann. NY Acad. Sci. 238:149.
  • Pilla, A. A. (1993). State of the art in electromagnetic therapeutics. In: Blank, M., ed. Electricity and Magnetism in Biology and Medicine. San Francisco: San Francisco Press Inc., pp. 17–22.
  • Pilla, A. A., Mont, M. A., Nasser, P. R., Khan, S. A., Fugieredo, M., Kaufman, J. J., Siffert, R. S. (1990). Non-invasive low-intensity pulsed ultrasound accelerate bone healing in rabbits. J. Orthop. Trauma 4:246–253.
  • Pilla, A. A., Markov, M. S. (1994). Weak electromagnetic field bioeffects. Rev. Environ. Health 10:155–169.
  • Polk, C. (1994). Therapeutic application of low frequency electric and magnetic fields. In: Lin, J. C., ed. Advances in Electromagnetic Fields in Living Systems. New York: Plenum Press, pp. 129–154.
  • Potenza, L., Ubaldi, L., De Sanctis, R., De Bellis, R., Cucchiarini, L., Dacha, M. (2004). Effects of a static magnetic field on cell growth and gene expression in Escherichia coli. Mutat. Res. 561:53–62.
  • Reed, B. V. (1988). Effects of high voltage pulsed electrical stimulation on microvascular permeability to plasma proteins. Physical Ther. 68:491–495.
  • Rodeman, H. P., Bayreuther, K., Pfleiderer, G. (1989). The differentiation of normal and transformed human fibroblasts in vitro is influenced by electromagnetic fields. Exp. Cell. Res. 182:610–621.
  • Rogachefsky, R. A., Altman, R. D., Markov, M. S., Cheung, H. S. (2004). Use of a permanent magnetic field to inhibit the development of canine osteoarthritis. Bioelectromagnetics 25:260–270.
  • Rojavin, M. A., Ziskin, M. C. (1998). Medical application of millimeter waves. Q. J. Med. 91:57–66.
  • Rosch, P. J., Markov, M. S. eds. (2004). Bioelectromagnetic Medicine. Marcel Dekker, p. 850.
  • Rosen, A. D. (1996). Inhibition of calcium channel activation in GH3 cells by static magnetic fields. Biochim. Biophys. Acta. 1282:149–155.
  • Rosen, A. D. (2003a). Effect of a 125 mT static magnetic field on the kinetics of voltage activated Nap channels in GH3 cells. Bioelectromagnetics 24:517–523.
  • Rosen, A. D. (2003b). Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem. Biophys. 39:163–173.
  • Ruggiero, M., Bottaro, D. P., Liguri, G., Gulisano, M., Peruzzi, B., Pacini, S. (2004). 0.2 T magnetic field inhibits angiogenesis in chick embryo chorioallantoic membrane. Bioelectromagnetics 25:390–396.
  • Salerno, S., Lo Casto, A., Caccamo, N., d'Anna, C., de Maria, M., Lagalla, R., Scola, L., Cardinale, A. E. (1999). Static magnetic fields generated by a 0.5 T MRI unit affects in vitro expression of activation markers and interleukin release in human peripheral blood mononuclear cells (PBMC). Int. J. Radiat. Biol. 75:457–463.
  • Segal, N. A., Toda, Y., Huston, J., Saeki, Y., Shimizu, M., Fuchs, H., Shimaoka, Y., Holcomb, R., McLean, M. J. (2001). Two configurations of static magnetic fields for treating rheumatoid arthritis of the knee: a double-blind clinical trial. Arch. Phys. Med. Rehabil. 82:1453–1460.
  • Shimizu, E., Matsuda-Honjyo, Y., Samoto, H., Saito, R., Nakajima, Y., Nakayama, Y., Kato, N., Yamazaki, M., Ogata, Y. (2004). Static magnetic fields-induced bone sialoprotein (BSP) expression is mediated through FGF2 response element and pituitaryspecific transcription factor-1 motif. J. Cell. Biochem. 91:1183–1196.
  • Shupak, N. (2003). Therapeutic uses of pulsed magnetic-field exposure: a review. Radio Sci. Bull. 307:9–32.
  • Sipka, S., Szollosi, I., Batta, G., Szegedi, G., Illes, A., Bako, G., Novak, D. (2004). Decreased chemotaxis of human peripheral phagocytes exposed to a strong static magnetic field. Acta Physiol. Hung. 91:59–65.
  • Seaborne, D., Quirion-deGirardi, C., Rousseau, M., Rivest, M., Lambert, J. (1996). The treatment of pressure sores using pulsed electromagnetic energy (PEME). Physiother. Canad. 8:131–137.
  • Sisken, B. F., Walker, J. (1995). Therapeutic aspects of electromagnetic fields for soft tissue healing. In: Blank, M. ed. Electromagnetic Fields: Biological Interactions and Mechanisms, Advances in Chemistry, V.250, Washington, D.C.: pp. 277–286.
  • Takeshige, C., Sato, M. (1996). Comparisons of pain relief mechanisms between needling to the muscle, static magnetic field, external qigong and needling to the acupuncture point. Acupunct Electrother Res 21:119–131.
  • Taniguchi, N., Kanai, S., Kawamoto, M., Endo, H., Higashino, H. (2004). Study on application of static magnetic Field for adjuvant arthritis rats. Evid Based Complement Alternat Med 1:187–191.
  • Teodori, L., Gohde, W., Valente, M. G., Tagliaferri, F., Coletti, D., Perniconi, V. B., Bergamaschi, A., Cerella, C., Ghibelli, L. (2002a). Static magnetic fields affect calcium fluxes and inhibit stress induced apoptosis in human glioblastoma cells. Cytometry 49:143–149.
  • Teodori, L., Grabarek, J., Smolewski, P., Ghibelli, L., Bergamaschi, A., De Nicola, M., Darzynkiewicz, Z. (2002b). Exposure of cells to static magnetic field accelerates loss of integrity of plasma membrane during apoptosis. Cytometry 49:113–118.
  • Todorov, N. (1982). Magnetotherapy. Sofia: Meditzina i Physcultura Publishing House, p. 106.
  • Tofani, S., Barone, D., Cintorino, M., de Santi, M. M., Ferrara, A., Orlassino, R., Ossola, P., Peroglio, F., Rolfo, K., Ronchetto, F. (2001). Static and ELF magnetic fields induce tumor growth inhibition and apoptosis. Bioelectromagnetics 22:419–428.
  • Tofani, S., Cintorino, M., Barone, D., Berardelli, M., De Santi, M. M., Ferrara, A., Orlassino, R., Ossola, P., Rolfo, K., Ronchetto, F., Tripodi, S. A., Tosi, P. (2002). Increased mouse survival, tumor growth inhibition and decreased immunoreactive p53 after exposure to magnetic fields. Bioelectromagnetics 23:230–238.
  • Traikov, L. L., Kuzmanova, M. A., Ivanov, S. P., Markov, M. S. (1994). Static magnetic field effects basic glycoprotein complex of the erythrocyte membrane. In: Allen, M. J., Cleary, S. F., Sowers, A. E., eds. Charge and Field Effects in Biosystems-4. World Scientific, pp. 334–348.
  • Valbona, C., Hazlewood, C., Jurida, G. (1997). Response of pain to static magnetic fields in postpolio patients: a double blind pilot study. Arch. Phys. Med. Rehab. 78:1200–1203.
  • Veliks, V., Ceihnere, E., Svikis, I., Aivars, J. (2004). Static magnetic field influence on rat brain function detected by heart rate monitoring. Bioelectromagnetics 25:211–215.
  • Vodovnik, L., Karba, R. (1992). Treatment of chronic wounds by means of electric and electromagnetic fields. Med & Biol. Eng. & Comput. 30:257–266.
  • Wartenberg, D., Savitz, D. A. (1993). Evaluating exposure cutpoint bias in epidemiological studies of electric and magnetic fields. Bioelectromagnetics 14:237–245.
  • Weintraub, M. (1998). Chronic submaximal magnetic stimulation in peripheral neuropathy: is there a beneficial therapeutic relationship. Am. J. Pain Management. 8:12–16.
  • Weintraub, M. I., Wolfe, G. I., Barohn, R. A., Cole, S. P., Parry, G. J., Hayat, G., Cohen, J. A., Page, J. C., Bromberg, M. B., Schwartz, S. L. (2003). Static magnetic field therapy for symptomatic diabetic neuropathy: a randomized, double-blind, placebo-controlled trial. Arch. Phys. Med. Rehabil. 84:736–746.
  • Werheimer, N., Savitz, D. A., Leeper, E. (1995). Chilhood cancer in relation to indicators of magnetic fields from ground current sources. Bioelectromagnetics 16:86–96.
  • Wieraszko, A. (2000). Dantrolene modulates the influence of steady magnetic fields on hippocampal evoked potentials in vitro. Bioelectromagnetics 21:175–182.
  • Wilson, D. H. (1974). Comparison of short-wave diathermy and pulsed electromagnetic energy in treatment of soft tissue injuries. Physiotherapy 80:309–310.
  • Wolsko, P. M., Eisenberg, D. M., Simon, L. S., Davis, R. B., Walleczek, J., Mayo-Smith, M., Kaptchuk, T. J., Phillips, R. S. (2004). Double-blind placebo-controlled trial of static magnets for the treatment of osteoarthritis of the knee: results of a pilot study. Altern. Ther. Health Med. 10:36–43.
  • World Health Organization (WHO). (1987). Magnetic Fields. United Nations Environment Programme. The International Labour Organization. Geneva.
  • Xu, S., Okano, H., Ohkubo, C. (1998). Subchronic effects of static magnetic fields on cutaneous microcirculation in rabbits. In Vivo 12:383–389.
  • Xu, S., Okano, H., Ohkubo, C. (2000). Acute effects of whole-body exposure to static magnetic fields and 50-Hz electromagnetic fields on muscle microcirculation in anesthetized mice. Bioelectrochemistry 53:127–135.
  • Xu, S., Tomita, N., Ohata, R., Yan, Q., Ikada, Y. (2001). Static magnetic field effects on bone formation of rats with an ischemic bone model. Biomed. Mater. Eng. 11:257–263.
  • Yamamoto, Y., Ohsaki, Y., Goto, T., Nakasima, A., Iijima, T. (2003). Effects of static magnetic fields on bone formation in rat osteoblast cultures. J. Dent. Res. 82:962–966.
  • Yan, Q. C., Tomita, N., Ikada, Y. (1998). Effects of static magnetic field on bone formation of rat femurs. Med. Eng. Phys. 20:397–402.
  • Ye, S. R., Yang, J. W., Chen, C. M. (2004). Effect of static magnetic fields on the amplitude of action potential in the lateral giant neuron of crayfish. Int. J. Radiat. Biol. 80:699–708.
  • Yuge, L., Okubo, A., Miyashita, T., Kumagai, T., Nikawa, T., Takeda, S., Kanno, M., Urabe, Y., Sugiyama, M., Kataoka, K. (2003). Physical stress by magnetic force accelerates differentiation of human osteoblasts. Biochem. Biophys. Res. Commun. 311:32–38.
  • Zukov, B. N., Lazarovich, V. G. (1989). Magnetotherapy in Angiology. Kiev: Zdorovie, p. 111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.