110
Views
18
CrossRef citations to date
0
Altmetric
Original

Some Problems in Modern Bioelectromagnetics

&
Pages 227-243 | Published online: 07 Jul 2009

References

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J. D. (1983). Molecular Biology of the Cell. New York: Garland Publishing.
  • Blackman, C. F., Benane, S. G., Rabinowitz, J. R., House. D. E., Joines, W. T. (1985). A role for the magnetic field in the radiation induced efflux of calcium ions from brain tissue in vitro. Bioelectomagnetics 6:327–337.
  • Blackman, S. F., Kinney, L. S., House, D. E., Joines, W. T. (1989). Multiple power-density windows and their possible origin. Bioelectromagnetics 10:115–128. [INFOTRIEVE], [CSA], [CROSSREF]
  • Blackman, C. F., Blanchard, J. P., Benane, S. G., House, D. E. (1994). Empirical test of an ion parametric resonance model for magnetic field interactions with PC-12 cells. Bioelectromagnetics 15:239–260. [INFOTRIEVE], [CSA], [CROSSREF]
  • Blanchard, J. P., Blackman, C. F. (1994). Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics 15:217–238. [INFOTRIEVE], [CSA], [CROSSREF]
  • Brief Chemical Encyclopedia. (1964). Moscow: Soviet Encyclopedia Press.
  • Bobkova, N. V., Novikov, V. V., Medvinskaya, N. I., Aleksandrova, I. Yu., Fesenko, E. E. (2006). Decrease of the level of brain amyloid in the brain under the influence of weak combined magnetic fields on the model of sporadic form of Alzheimer disease. Biophysics, accepted for print. [CSA]
  • Comisso, N., Del Giudice, E., De Ninno, A., Fleischmann, M., Giuliani, L., Mengoli, G., Merlo, F., Talpo, G. (2006). Dynamics of the ion cyclotron resonance effect on amino acids adsorbed at the interfaces. Bioelectromagnetics 27:16–25. [INFOTRIEVE], [CSA], [CROSSREF]
  • Del Giudice, E., Preparata, G. (1994). Coherent dynamics in water as possible explanation of membrane formation. J. Biol. Phys. 20:105–116. [CSA], [CROSSREF]
  • Del Giudice, E., Fleischmann, M., Preparata, G., Talpo, G. (2002). On the “unreasonable” effects of ELF magnetic field upon a system of ions. Bioelectromagnetics 23:522–530. [INFOTRIEVE], [CSA], [CROSSREF]
  • Edmonds, D. T. (1993). Larmor precession as a mechanism for the detection of static and alternating magnetic fields. Bioelectrochem. Bioenergetics 30:3–12. [CSA], [CROSSREF]
  • Fesenko, E. E., Novikov, V. V., Bobkova, N. V. (2003). Decomposition of beta-amyloid protein under action of weak magnetic fields. Biophysics 48:317–220. [CSA]
  • Jenrow, K. A., Smith, C. H., Liboff, A. R. (1995). Weak extremely-low-frequency magnetic fields and regeneration in the planarian Dugesia tigrina. Bioelectromagnetics 16:106–112. [INFOTRIEVE], [CSA], [CROSSREF]
  • Lednev, V. V. (1991). Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics 12:71–75. [INFOTRIEVE], [CSA], [CROSSREF]
  • Lerchi, A., Reiter, R. J., Howes, K. A., Nonaka, K. O., Stokkan, K. A. (1991). Evidence that extremely low frequency Ca-cyclotron resonance depresses pineal melatonin synthesis in vitro. Neurosci. Lett. 124:213–215. [CSA], [CROSSREF]
  • Liboff, A. R. (1985). Cyclotron resonance in membrane transport. In: Chiabrera, A., Nicolini, C., Schwan, H. P., eds. Interactions Between Electromagnetic Fields and Cells. New York: Plenum Press, pp. 281–296.
  • Liboff, A. R., Smith, S. D., McLeod, B. R. (1987a). Experimental evidence for ion cyclotron resonance mediation of membrane transport. In: Blank, M., Findl, E., eds. Mechanistic Approaches to Interaction of Electric and Electromagnetic Fields with Living Systems. New York: Plenum Press, pp. 109–132.
  • Liboff, A. R., Rozek, R. J., Sherman, M. L., McLeod, B. R., Smith, S. D. (1987b). Ca-45 cyclotron resonance in human lymphocytes. J. Bioelectricity 6:13–22. [CSA]
  • Lovely, R. H., Creim, J. A., Miller, D. L., Anderson, L. E. (1993). behavior of rats in a radial arm maze during exposure to magnetic fields: Evidence for effects of magnesium ion resonance. In: 15th Annual Meeting BEMS, Abstract E1-6, Los Angeles, June, pp. 13–17.
  • Mandelshtam, L. I. (1972). Lectures on Oscillation. Moscow: Russian Scientific Publishing House.
  • McLeod, B. R., Liboff, A. R. (1987). Cyclotron resonance in cell membranes: the theory of the mechanism. In: Blank, M., Findl, E., eds. Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems. New York: Plenum Press, pp. 97–108.
  • Metzler, D. (1977). Biochemistry. New York, SanFrancisco, London: Academic Press.
  • Muehsam, D. J., Pilla, A. A. (1994). Weak field modulation of ion dynamics in a potential well: Mechanistic and thermal noise considerations. Bioelectrochem. Bioenergetics 28:355–365. [CSA]
  • Murray, R. K., Granner, D. K., Mayes, P. A., Rodwell, V. W. (1988). Harper's Biochemistry. Norwalk-San Mateo: Appleton & Lange.
  • Novikov, V. V., Zhadin, M. N. (1994). Combined action of weak static and low frequency alternating magnetic fields on ionic current in aqueous amino acid solutions. Biofizika 39:45–49 (In Russian). [CSA]
  • Pauling, L. (1982). General Chemistry. Dover, New Tork: Freeman.
  • Pazur, A. (2004). Characterisation of weak magnetic field effects in an aqueous glutamic acid solution by nonlinear dielectric spectroscopy and voltammetry. Biomagnetic Research and Technology 2:8, [INFOTRIEVE], [CSA], [CROSSREF]
  • Permyakov, E. A. (1993). Calcium-Binding Proteins. Moscow: Science (In Russian).
  • Persson, B. R. R., Lindval, l. M., Malmgren, L., Salford, L. G. (1992). Interaction of low-level combined static and extremely low-frequency magnetic fields with calcium transport in normal and transformed human lymphocytes and rat thymic cells. In: Norden, B., Ramel, C., eds. Interaction Mechanisms of Low-Level Electromagnetic Fields and Living Systems. Oxford: Oxford University Press, pp. 199–209.
  • Preparata, G. (1995). QED Coherence in Matter. New York: World Scientific.
  • Preparata, G. (2000). QED and medicine. Rivista di Biologia/Biology Forum 93:467–512. [CSA]
  • Reese, J. A., Frazier, M. E., Morris, D. L. (1991). Evaluation of changes in diatom mobility after exposure to 16-Hz electromagnetic fields. Bioelectromagnetics 12:21–25. [INFOTRIEVE], [CSA], [CROSSREF]
  • Roberts, J. D., Caserio, M. C. (1964). Basic Principles of Organic Chemistry. New York, Amsterdam: Calif. Inst. Technology.
  • Rochev, Y. A., Narimanov, A. A., Sosunov, E. A., Kozlov, A. N., Lednev, V. V. (1990). Effect of weak magnetic field on the rate of cell proliferation in culture. Studia Biophysica 2:93–98. [CSA]
  • Shuvalova, L. A., Ostrovskaya, M. V., Sosunov, E. A., Lednev, V. V. (1991). Influence of week magnetic field at parametric resonance on rate of calmodulin-dependent phosphorylation of myosin in the solution. Proc. AS USSR 317(1):227–230. [CSA]
  • Slabaugh, W. H., Parsons, T. D. (1979). General Chemistry. New York, Sydney, Toronto: J. Wiley.
  • Smith, S. D., McLeod, B. R., Liboff, A. R. (1987). Calcium cyclotron resonance and diatome mobility. Bioelectromagnetics 8:215–227. [INFOTRIEVE], [CSA], [CROSSREF]
  • Smith, S. D., Mcleod, B. R., Liboff, A. R. (1993). Effects of CR-tuned 60 Hz magnetic fields on sprouting and early growth of Raphanus-sativus. Bioelectrochem Bioenergetics 32:67–76. [CSA], [CROSSREF]
  • Tamm, I. E. (1989). Foundations of Electricity Theory. Moscow: Science (in Russian).
  • Thomas, J. R., Schrot, J., Liboff, A. R. (1986). Low intensity magnetic fields alter operant behavior in rats. Bioelectromagnetics 7:349–357. [INFOTRIEVE], [CSA], [CROSSREF]
  • Tiras, Kh. P, Srebnitskaya, L. K., Ilyasova, E. N., Klimov, A. A., Lednev, V. V. (1996). The influence of weak combined magnetic field on the rate of regeneration in planarians. Dugesia tigrins. Biophysics 41:826–831. [CSA]
  • Walsh, R. N., Cummins, R. A. (1976). The open-field test: A critical review. Psychol. Bull. 83:482–504. [CSA], [CROSSREF]
  • White, A., Handler, P., Smith, E., Hill, R., Lehman, I. R. (1978). Principles of Biochemistry. New York, London: McGraw Hill.
  • Yost, M. G., Liburdy, R. P. (1992). Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte. FEBS Lett. 296:117–122. [INFOTRIEVE], [CSA], [CROSSREF]
  • Zhadin, M. N. (1996). Effect of magnetic fields on the motion of an ion in a macromolecule: theoretical analysis. Biophysics 41:843–860. [CSA]
  • Zhadin, M. N. (1998). Combined action of static and alternating magnetic fields on ion motion in a macromolecule: theoretical aspects. Bioelectromagnetics 19:279–292. [INFOTRIEVE], [CSA], [CROSSREF]
  • Zhadin, M., Barnes, F. (2005). Frequency and amplitude windows at combined action of DC and low frequency AC magnetic fields on ion thermal motion in a macromolecule: Theoretical analysis. Bioelectromagnetics 26:323–330. [INFOTRIEVE], [CSA], [CROSSREF]
  • Zhadin, M. N., Novikov, V. V., Barnes, F. S., Pergola, N. F. (1998). Combined action of static and alternating magnetic fields on ionic current in aqueous glutamic acid solution. Bioelectromagnetics 19:41–45. [INFOTRIEVE], [CSA], [CROSSREF]
  • Zhadin, M. N., Deryugina, O. N., Pisachenko, T. M. (1999). Influence of combined DC and AC magnetic fields on rat behavior. Bioelectromagnetics 20:377–386. [CSA], [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.