84
Views
8
CrossRef citations to date
0
Altmetric
Original

Light and Electron Microscope Studies of Effects of 50 Hz Electromagnetic Fields on Preincubated Chick Embryo

, &
Pages 83-98 | Published online: 07 Jul 2009

References

  • Abdullakhdzhayeza, M. S., Razykov, S. P. (1986). Structural changes in the central nervous system caused by exposure to permanent magnetic field. Bull. Eksp. Biol. Med. 102:600–602.
  • Abit, B. D., Russell, D., Owen, L. W. (1999). Ornithine decarboxylase activity in developing chick embryos after exposure to 60 Hz magnetic fields. Biochem. Biophys. Res. Commun. 265:211–213.
  • Adey, W. R. (1988). Cell membranes: the electromagnetic environment and cancer promotion. Neurochem. Res. 13:671–677.
  • Badzhinian, S. A., Meliksetina, A. M., Kazarian, P. A., Malakian, M. G., Grigorian, D. S. (2002). Electromagnetic fields of millimeter range effect on the structure and functional properties of erythrocyte membranes. Radiat. Biol. Radioecol. 42(5):551–555.
  • Bardassano, J. I., Meyer, A. J., Picazo, L. (1986). Pineal cells with multipolar spindle in chicken embryos exposed to magnetic fields. First Trials Z. Microsk. Anat. Forsch. Leipzig 100:85–92.
  • Blackman, C. F., Benane, S. G., Elliot, D. J., House, D. E., Pollock, M. M. (1988). Influence of electromagnetic fields on the efflux of calcium ions from brain tissue in vitro: a three model analysis consistent with the frequency response up to 510 Hz. Bioelectromagnetics 6:1–11.
  • Blackman, C. F., Benane, S. G., Kinney, L. S., House, D. E., Joines, W. T. (1982). Effects of ELF fields on calcium influx from brain tissue in vitro. Radiat. Res. 92:510–520.
  • Bozzola, J. J., Lonnie, D. L. (1999). Electron Microscopy Principles and Techniques for Biology. 2nd ed. John and Bartlett.
  • Britt, M. S., Karl, J. J. (1995). Fetal loss in mice exposed to magnetic fields during early pregnancy. Bioelectromagnetics 16:284–289.
  • Butros, J. (1972). Action of spermine on early chick development morphogenesis and histogenesis. Teratology 6:181–190.
  • Cameron, I. L., Hunter, K. E., Winters, W. D. (1985). Retardation of embryogenesis by extremely low frequency 60 Hz electromagnetic fields. Physiol. Chem. Phys. Med. N.M.R. 17:135–138.
  • Cohen, M., Lippman, M., Chabner, B. (1978). Role of pineal gland in an etiology and treatment of breast cancer. Bioelectromagnetics 2:814–816.
  • Cossarizza, A., Monti, D., Bersani, F., Cantini, M., Cadossi, R., Saachi, A., Franceschi, C. (1989). Extremely low frequency pulsed electromagnetic fields increase cell proliferation in lymphocytes from young and aged subjects. Biochem. Biophys. Res. Commun. 160(2):692–698.
  • Delgado, J. M. R., Leal, J., Monteagudo, J. L., Gracia, M. G. (1982). Embryological changes induced by weak, extremely low frequency electromagnetic fields. J. Anat. 134:533–551.
  • Detlevs, I., Dombrovskai, L., Turauska, A., Shkirmante, B., Slutskii, L. (1996). Experimental study of the effects of radiofrequency electromagnetic fields on animals with soft tissue wounds. Sci. Total Environ. 180:35–42.
  • DiCarlo, A. L., Litovitz, T. A. (1999). Is genetics the unrecognized confounding factor in bioelectromagnetics? Flock-dependence of field-induced anoxia protection in chick embryos. Bioelectrochem. Bioenerg. 48:209–215.
  • DiCarlo, A. L., Mullins, J. M., Litovitz, T. A. (2000). Thresholds for electromagnetic field – induced hypoxia protection: evidence for a primary electric field effect. Bioelectrochemistry 52:9–16.
  • Dindar, H., Renda, N., Barlas, M., Akinay, A., Yazgen, E., Tincert, T., Cakmak, M., Konkan, R., Gokcora, I. H., Yucesan, S. (1993). The effect of electromagnetic field stimulation on corticosteroids – inhibited intestinal wound healing. Tokai J. Exp. Clin. Med. 18:49–55.
  • Espinar, A., Piera, V., Carmona, A., Guerrero, J. M. (1997). Histological changes during development of the cerebellum in the chick embryo exposed to a static magnetic field. Bioelectromagnetics 18:36–46.
  • Farrell, J. M., Barber, M., Doinov, P., Krause, D., Litovitz, T. A. (1993). Effect of 60 Hz sinusoidal magnetic fields on ornithine decarboxylase activity in developing chick embryos. In: Electricity and Magnetism in Biology and Medicine. Sanfrancisco Press Inc., pp. 342–344.
  • Farrell, J. M., Barber, M., Krause, D., Litovitz, T. A. (1996). Effects of weak electromagnetic fields on the activity of ornithine decarboxylase in developing chicken embryos. Bioelecterochem. Bioenerg. 43(1):13–18.
  • Farrell, J. M., Litovitz, T. A., Penafiel, M., Montrose, C. J., Doinov, P., Barber, M., Brown, K. M., Litovitz, T. A. (1997). The effect of pulsed and sinusoidal magnetic fields on the morphology of developing chick embryos. Bioelectromagnetics 18(6):431–438.
  • Feychting, M., Ahlbom, A. (1994). Magnetic fields and cancer in children residing near high voltage power lines. Epidemiology 5:501–509.
  • Finnel, R. H., Gelineau-Van Waes, J., Eudy, J. D., Rosenquist, T. H. (2002). Genetic regulation of susceptibility to environmentally induced birth defects. Ann. Rev. Phamachol. Toxicol. 42:181–208.
  • Frey, A. H. (1993). Electromagnetic field interactions with biological systems. FASEB J. 7:272–281.
  • Fulton, J. P., Cobb, S., Preble, L., Leone, L., Forman, E. (1980). Electrical wiring configurations and childhood leukemia in Rhode Island. Am J. Epidemiol. 111:292–296.
  • Galt, S., Wahlstrom, J., Hammenius, Y., Holmquist, D., Johannesson, T. (1995). Study of effects of 50 Hz magnetic fields on chromosome aberrations and the growth related enzyme ODC in human amniotic cells. Bioelectrochem. Bioenerg. 36:1–8.
  • Gayle, C., Indham, G. C., Shanna, H. S., Neutra, R. (1990). Use of video display terminals during pregnancy and the risk of spontaneous abortion, low birth weight, or intrauterine growth retardation. Am. J. Indu. Med. 18:675–688.
  • Goodman, R., Henderson, A. (1988). Exposure of salivary gland cells to low-frequency electromagnetic fields alters poly-peptide synthesis. Proc. Natl. Acad. Sci. 85(11):3928–3932.
  • Greenbaum, B., Sutton, C. H., Vadula, M. S., Battocletti, J. H., Swiontek, T., Dekeyser, J., Sisken, B. F. (1996). Effects of pulsed magnetic fields in neurite outgrowth from chick embryo dorsal root ganglia. Bioelectromagnetics 17(4):293–300.
  • Groh, K. R., Ehret, C. F., Readey, M. A. (1987). Photoperiodic phase radios of entrainment influence phase shifts in the circadian acrophase of activity following exposure to 60 Hz electric fields in the mouse peromyscus. Bioelectromagn. Soc. Conf. Portland USA.
  • Harland, J. D., Liburdy, R. P. (1996). ELF inhibition of melatonin and tamoxifen action on MCF-7 cell proliferation. Electromagnetic Forum 1(2). Article 4.
  • Hughes, J. T. (1994). Electromagnetic fields and brain tumors: a commentary. Teratolol. Carcinogen 14:213–217.
  • Juutilainen, J., Saalik, K. (1986). Development of chick embryos in 1 Hz to 1 KHz magnetic fields. Radiat. Environ. Biophys. 25:135–140.
  • Kimberly, J. F., David, M. B., Lionie, D. L., Paul, C. L. (2000). Effects of electromagnetic fields on the reproductive success of American kestrels. Physiolog. Biochem. Zoology 73(1):60–65.
  • Kirshvink, J. L., Kirshvink, A. K., Diaz-Ricci, J. C., Kirshvink, S. J. (1992). Magnetic in human tissue: a mechanism for biological effects of weak ELF magnetic fields. Bioelectromagnetics 1:101–113.
  • Kowalczuk, C. I., Robbins, L., Thomas, J. M., Butland, B. K., Saunders, R. D. (1994). Effects of prenatal exposure to 50 Hz magnetic fields on development of mice 1. Implantation rate and fetal development. Bioelectromagnetics 15:349–361.
  • Kumlin, T., Heikinen, P., Kosma, V. M., Alhonen, L., Janne, J., Juutilainen, J. (2002). P53-independendent apoptosis in uv-irradiated mouse skin: possible inhibition by 50 Hz magnetic field. Radiat. Environ. Biophys. 41(2):155–158.
  • Kurup, R. K., Kurup, P. A. (2003). Hypothalamic digoxin, geomanetic fields and human disease: a hypothesis. Med. Hypothsis 60:237–242.
  • Levallois, P., Dumont, M., Touitou, Y., Gingras, S., Masse, B., Gauvin, D., Krogger, E., Bourdays, M., Douville, P. (2002). Effects of electric and magnetic fields from high power lines on female urinary excretion of 60-sulfo-toxy-melatonin. Am. J. Epidemiol. 154:601–609.
  • Levin, M. (1997). DC magnetic field effects on early sea urchin development. Bioelectromagnetics 18(3):255–263.
  • Liburdy, R. P., Callahan, D. E., Hrland, J., Dunlam, E., Solma, T. R., Yaswen, P. (1993). Experimental evidence for 60 Hz magnetic fields operating through the signal transduction cascade: effects on influx and c-Myc mRNA Induction. Feb. Lett. 334:301–308.
  • Lin, S. R., Lu, P. Y. (1989). An epidemiologic study of childhood cancer in relation to residential exposure to electromagnetic fields. Abstract from DOE/EPRI Contractors Meeting. Portland, USA.
  • Linnet, M. S., Hatch, E. E., Kleinerman, R. A., Robison, L. L., Kaune, W. T., Friedman, D. R., Severson, R. K., Haines, C. M., Hartsock, C. T., Niwa, S., Wacholder, S., Trane, R. E. (1997). Residental exposure to magnetic fields and acute lymphoblastic leukemia in children. New Engl. J. Med. 337:1–7.
  • Litovitz, T. A., Krause, D., Montrose, C. J., Mullins, J. M. (1994). Temporally incoherent magnetic fields mitigate the response of biological systems to temporally coherent magnetic fields. Bioelectromagnetics 15:399–409.
  • Litovitz, T. A., Krause, D., Mullins, J. M. (1994). Effect of coherence time of the applied magnetic field on ornithine decarboxylase activity. Biochem. Biophys. Res. Commun. 178(3):862–865.
  • Lohmann, C. H., Schwartz, Z., Liu, Y., Li, Z., Simon, B. J., Sylvia, V. L., Dean, D. D., Bonewald, L. F., Donahue, H. J., Boyan, B. D. (2003). Pulsed electromagnetic fields affect phenotype and connexin43 protein expression in MLO-Y4 osteocyte-like cells and ROS 17/2.8 osteoblast-like cells. J. Orthop. Res. 21(2):326–334.
  • London, S. J., Thomas, D. C., Bowman, J. D., Sobel, E., Peters, J. M. (1991). Exposure to residential electric and magnetic fields and risk of childhood leukemia. Am. J. Epidemiol. 134:923–937.
  • Loscher, W., Mevissen, M. (1994). Animal studies on the role of 50/60 Hz magnetic fields in carcinogenesis. Life Sci. 54(21):1531–1543.
  • Marino, A. A., Kolomytkin, O. V., Frilot, C. (2003). Extracellular currents alter gap junction intercellular communication in synovial fibroblasts. Bioelectromagnetics 24(3):199–205.
  • McDonald, L. J., Loberg, L. I., McCormick, J. R., Gauger, R. E., Savage, R. E. Jr., Zhu, L. W., Lotz, W. G., Manderille, R., Owen, R. D., Cress, L. W., Desta, A. B. (1999). Ornithine decarboxylase activity in developing chick embryo after exposure to 60 Hz magnetic fields, including harmonic transient field characteristics. Toxicol. Mechan. Meth. 13(1):31–38.
  • Montserrat, J., Miguel, T., Rosa, G., Auxiliadora, E., Pedro, C., Veronica, P. (1999). Effects of static electromagnetic fields on chick embryo pineal gland development. Cells Tissues Organs 165:74–80.
  • Myers, A., Clayden, A. D., Cartwright, R. A., Cartwright, S. C. (1989). Childhood cancer and overhead power lines: a case control study. Br. J. Cancer 63:977–978.
  • Olsen, J. H., Nielsen, A., Schulgen, G. (1993). Residence near high voltage facilities and risk of cancer in children. Br. Med. J. 307:891–895.
  • Piera, V., Espinar, A., Torrente, J. M., Cobos, P., Perez-Castilla, J. (1997). Effecto de los campos electromagneticos continuos sobre el permanent magnetic field. Biull. Eksp. Boil. Med. 102:600–602.
  • Pool, R. (1990). Electromagnetic fields: the biological evidence. Science 249:1378–1381.
  • Reiter, R. J. (1987). The melatonin message: duration versus coincidence hypothesis. Life Sci. 46:2119–2131.
  • Reiter, R. J., Hurlbut, E. C., Esquifino, A. I., Esquifino, A. L., Champney, T. H., Steger, R. W. (1984). Changes in serotonin levels in the pineal gland of the Richardson's ground squirrel in relation to the light–dark cycle. Neuroendocrinology 39:356–60.
  • Rooze, M., Hinsenkamp, M. (1985). In vivo modifications induced by electromagnetic stimulation of chicken embryos. Reconstr. Surg. Traum. 19:87–92.
  • Savitz, D. A., Wachtel, H., Barnes, F. A., John, E. M., Tvrdik, J. G. (1988). Case control study of childhood cancer and exposure to 60 Hz magnetic fields. Am. J. Epidemiol. 128:21–38.
  • Semm, P., Schneider, T., Vollrath, L. (1980). Effects of on earth-strength magnetic fields on electrical activity of pineal gland. Nature 288:607–608.
  • Severson, R. K., Stevens, R. G., Kaune, W. T., Thomas, D. B., Heuser, L., Davis, S., Sever, L. E. (1988). Acute nonlymphocytic leukemia and residential exposure to power frequency magnetic fields. Am. J. Epidemiol. 128:10–20.
  • Shams Lahijani, M., Ghafoori, M. (1999). Teratogenic effects of sinusoidal extremely low frequency electromagnetic fields on the morphology of 24 hrs chick (white leghorn) embryos. Ind. J. Experi. Biol. 38:692–699.
  • Shams Lahijani, M., Rajabi Maham, H. (2000). Teratogenic effects on morphology and skeletal structure of chick embryos after exposure to 50 Hz sinusoidal electromagnetic fields. Iranian J. Sci. Technol. 24(2):173–182.
  • Shams Lahijani, M., Sajadi K. (2004). Development of preincubated chicken (white leghorn) eggs, following Exposure to 50 Hz electromagnetic fields with 1.33–7.32 mT flux densities. Ind. J. Experi. Biol. 42:858–865.
  • Shams Lahijani, M., Sharifnia, Kh., Rajabi Maham, H. (1998). Effects of 50 Hz electromagnetic fields on pre and postincubated chick embryo. J. Pajoohesh Sazandegi 3(12):108–111.
  • Shams Lahijani, M., Sharifnia, Kh. (1998). Effects on chick embryos (white leghorn) exposed to 50 Hz alternative electromagnetic fields during different developmental stages. Iranian J. Sci. Technol. 23(4):301–305.
  • Soleimani, M., Katebi, M., Soleimani Rad, J. (1997). The effects of electromagnetic field on heart development. 13th Congress of Physiology and Pharmacology, Tehran, Iran.
  • Stuchly, M. A., Lecuyer, D. W., McLean, J. R. N. (1991). Cancer promotion in a mouse-skin model by a 60-Hz magnetic field: II Tumor development and immune response. Bioelectromagnetics 12:273–287.
  • Tamarkin, L., Cohen, M., Rosselle, D., Reichert, C., Lippman, M., Chabner, B. (1993). Evidence for direct effects of magnetic fields on neurite growth. FASEB J. 7:801–806.
  • Ubeda, A., Leal, J., Trillo, M. A., Jiminez, M. A., Delgado, J. M. R. (1983). Pulse shape of magnetic fields influences chick embryogenesis. J. Anat. 137:513–536.
  • Veisteinas, A., Belleri, M., Cinquetti, A., Parolini, S., Barbato, G. M., Tosatti, M. P. (1996). Developmental of chicken embryos exposed on an intermittent horizontal sinusoidal 50 Hz magnetic field. Bioelectromagnetics 17:411–424.
  • Verksalo, P. K., Pukala, E., Hongisto, M. Y., Valjus, J. E., Heikkila, K. V., Koskenvuo, M. (1993). Risk of cancer in Finnish children living close to power lines. Brit. Med. J. 307:895–899.
  • Walleczek, J. (1992). Electromagnetic field effects on cells of the immune system: the role of calcium signalling. FASEB J. 6:3177–3185.
  • Welker, H. A., Semm, P., Willing, R. P., Commentz, J. C., Wiltschko, W., Vollrath, L. (1983). Effects of an artificial magnetic fields on serotonin N-acetyltransferase activity and melatonin content of the rat pineal gland. Exp. Brain Res. 50(2–3):426–432.
  • Wertheimer, N., Leeper, E. (1979). Electrical wiring configurations and childhood cancer. Am. J. Epidemiol. 109:273–83.
  • Whalstraom, O. (1984). Stimulation of fracture healing with electromagnetic fields of extremely low frequency. Clin. Orthop. 186:293–301.
  • Wilson, B. W., Anderson, L. E., Hilton, D. I., Philips, R. D. (1981). Chronic exposure to 60 Hz electric fields: effects on pineal function in the rat. Bioelectromagnetics 2(4):371–380.
  • Yaga, K., Reiter, R. J., Manchester, L. C., Nieves, H., Sun, J. H., Chen, L. D. (1993). Pineal sensitivity to pulsed static magnetic fields changes during the photoperiod. Brain Res. Bull. 30(1–2):153–156.
  • Youngson, J. H., Clayden, A. D., Myers, A., Cartwright, R. A. A. (1991). A case control study of adult haematological malignancies in relation to overhead power lines. Br. J. of Cancer 63:977–985.
  • Zecca, L., Mantegazza, C., Margonato, V., Cerretelli, P., Caniatti, M., Piva, F., Dondi, D., Hagino, N. (1995). Biological effects of prolonged exposure to ELF electromagnetic fields in rats.III: 50 Hz electromagnetic fields. Bioelectromagnetics 16:343–355.
  • Zeng, Q. L., Chiang, H., Hu, G. L., Mao, G. G., Fu, Y. T., Lu, D. Q. (2003). ELF magnetic fields induce internalization of gap junction protein connexin43 in chinese hamster lung cells. Bioelectromagnetics 24(2):134–138.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.